flink keyBy算子

[TOC]
Flink的Transformation转换主要包括四种:单数据流基本转换、基于Key的分组转换、多数据流转换和数据重分布转换。本文主要介绍基于Key的分组转换,

数据类型的转化

对数据分组主要是为了进行后续的聚合操作,即对同组数据进行聚合分析。keyBy会将一个DataStream转化为一个KeyedStream,聚合操作会将KeyedStream转化为DataStream。如果聚合前每个元素数据类型是T,聚合后的数据类型仍为T。

image.png

keyBy
绝大多数情况,我们要根据事件的某种属性或数据的某个字段进行分组,对一个分组内的数据进行处理。如下图所示,keyBy算子根据元素的形状对数据进行分组,相同形状的元素被分到了一起,可被后续算子统一处理。比如,多支股票数据流处理时,可以根据股票代号进行分组,然后对同一股票代号的数据统计其价格变动。又如,电商用户行为日志把所有用户的行为都记录了下来,如果要分析某一个用户行为,需要先按用户ID进行分组。

image.png

keyBy算子将DataStream转换成一个KeyedStream。KeyedStream是一种特殊的DataStream,事实上,KeyedStream继承了DataStream,DataStream的各元素随机分布在各Task Slot中,KeyedStream的各元素按照Key分组,分配到各Task Slot中。我们需要向keyBy算子传递一个参数,以告知Flink以什么字段作为Key进行分组。

我们可以使用数字位置来指定Key:

val dataStream: DataStream[(Int, Double)] = senv.fromElements((1, 1.0), (2, 3.2), (1, 5.5), (3, 10.0), (3, 12.5))

// 使用数字位置定义Key 按照第一个字段进行分组
val keyedStream = dataStream.keyBy(0)

也可以使用字段名来指定Key,比如StockPrice里的股票代号symbol:

val stockPriceStream: DataStream[StockPrice] = stockPriceRawStream.keyBy(_.symbol)

一旦按照Key分组后,我们后续可以按照Key进行时间窗口的处理和状态的创建和更新。数据流里包含相同Key的数据都可以访问和修改相同的状态

aggregation

常见的聚合操作有sum、max、min等,这些聚合操作统称为aggregation。aggregation需要一个参数来指定按照哪个字段进行聚合。跟keyBy相似,我们可以使用数字位置来指定对哪个字段进行聚合,也可以使用字段名。

与批处理不同,这些聚合函数是对流数据进行数据,流数据是依次进入Flink的,聚合操作是对之前流入的数据进行统计聚合。sum算子的功能对该字段进行加和,并将结果保存在该字段上。min操作无法确定其他字段的数值。

val tupleStream = senv.fromElements(
      (0, 0, 0), (0, 1, 1), (0, 2, 2),
      (1, 0, 6), (1, 1, 7), (1, 2, 8)
)

// 按第一个字段分组,对第二个字段求和,打印出来的结果如下:
//  (0,0,0)
//  (0,1,0)
//  (0,3,0)
//  (1,0,6)
//  (1,1,6)
//  (1,3,6)
val sumStream = tupleStream.keyBy(0).sum(1).print()

max算子对该字段求最大值,并将结果保存在该字段上。对于其他字段,该操作并不能保证其数值。

// 按第一个字段分组,对第三个字段求最大值max,打印出来的结果如下:
//  (0,0,0)
//  (0,0,1)
//  (0,0,2)
//  (1,0,6)
//  (1,0,7)
//  (1,0,8)
val maxStream = tupleStream.keyBy(0).max(2).print()

maxBy算子对该字段求最大值,maxBy与max的区别在于,maxBy同时保留其他字段的数值,即maxBy可以得到数据流中最大的元素。

// 按第一个字段分组,对第三个字段求最大值maxBy,打印出来的结果如下:
//  (0,0,0)
//  (0,1,1)
//  (0,2,2)
//  (1,0,6)
//  (1,1,7)
//  (1,2,8)
val maxByStream = tupleStream.keyBy(0).maxBy(2).print()

同样,min和minBy的区别在于,min算子对某字段求最小值,minBy返回具有最小值的元素。

其实,这些aggregation操作里已经封装了状态数据,比如,sum算子内部记录了当前的和,max算子内部记录了当前的最大值。由于内部封装了状态数据,而且状态数据并不会被清理,因此一定要避免在一个无限数据流上使用aggregation。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容