蓝牙协议栈架构梳理

目录

芯片架构方案

协议栈框架分析

数据传输过程

协议栈各层详解

L2CAP层详解

SMP层详解

ATT层详解

GATT层详解



架构1:host+controller双芯片标准架构

蓝牙双芯片架构.jpg

架构2:单芯片整体方案

host和controller之间直接通过API来交互。像Nordic的蓝牙协议栈Softdevice

单芯片方案.jpg

架构3:自定义双芯片架构

它需要一颗功能非常强大的MCU来做主应用,而蓝牙SoC只是整个系统的一部分,这种情况下,大部分蓝牙协议栈功能或者整个蓝牙协议栈功能都是跑在蓝牙SoC中

自定义双芯片架构.jpg
链接:https://blog.csdn.net/iini01/article/details/79943908


协议栈框架分析

在深入BLE协议栈各个组成部分之前,我们先看一下BLE协议栈整体架构

BLE协议栈架构.jpg
  • PHY层(Physical layer物理层)。PHY层用来指定BLE所用的无线频段,调制解调方式和方法等。PHY层做得好不好,直接决定整个BLE芯片的功耗,灵敏度以及selectivity等射频指标。
  • LL层(Link Layer链路层)。LL层是整个BLE协议栈的核心,也是BLE协议栈的难点和重点。像Nordic的BLE协议栈能同时支持20个link(连接),就是LL层的功劳。LL层要做的事情非常多,比如具体选择哪个射频通道进行通信,怎么识别空中数据包,具体在哪个时间点把数据包发送出去,怎么保证数据的完整性,ACK如何接收,如何进行重传,以及如何对链路进行管理和控制等等。LL层只负责把数据发出去或者收回来,对数据进行怎样的解析则交给上面的GAP或者GATT。
  • HCI(Host controller interface)。HCI是可选的(具体请参考文章: 三种蓝牙架构实现方案(蓝牙协议栈方案)),HCI主要用于2颗芯片实现BLE协议栈的场合,用来规范两者之间的通信协议和通信命令等。
  • GAP层(Generic access profile)。GAP是对LL层payload(有效数据包)如何进行解析的两种方式中的一种,而且是最简单的那一种。GAP简单的对LL payload进行一些规范和定义,因此GAP能实现的功能极其有限。GAP目前主要用来进行广播,扫描和发起连接等。
  • L2CAP层(Logic link control and adaptation protocol)。L2CAP对LL进行了一次简单封装,LL只关心传输的数据本身,L2CAP就要区分是加密通道还是普通通道,同时还要对连接间隔进行管理。
  • SMP(Secure manager protocol)。SMP用来管理BLE连接的加密和安全的,如何保证连接的安全性,同时不影响用户的体验,这些都是SMP要考虑的工作。
  • ATT(Attribute protocol)。简单来说,ATT层用来定义用户命令及命令操作的数据,比如读取某个数据或者写某个数据。BLE协议栈中,开发者接触最多的就是ATT。BLE引入了attribute概念,用来描述一条一条的数据。Attribute除了定义数据,同时定义该数据可以使用的ATT命令,因此这一层被称为ATT层。
  • GATT(Generic attribute profile )。GATT用来规范attribute中的数据内容,并运用group(分组)的概念对attribute进行分类管理。没有GATT,BLE协议栈也能跑,但互联互通就会出问题,也正是因为有了GATT和各种各样的应用profile,BLE摆脱了ZigBee等无线协议的兼容性困境,成了出货量最大的2.4G无线通信产品。


如何通过无线发送一个数据包

假设有设备A和设备B,设备A要把自己目前的电量状态83%(十六进制表示为0x53)发给设备B,该怎么做呢?作为一个开发者,他希望越简单越好,对他而言,他希望调用一个简单的API就能完成这件事,比如send(0x53),实际上我们的BLE协议栈就是这样设计的,开发者只需调用send(0x53)就可以把数据发送出去了,其余的事情BLE协议栈帮你搞定。很多人会想,BLE协议栈是不是直接在物理层就把0x53发出去,就如下图所示:

图五

这种方式初看起来挺美的,但由于很多细节没有考虑到,实际是不可行的。首先,它没有考虑用哪一个射频信道来进行传输,在不更改API的情况下,我们只能对协议栈进行分层,为此引入LL层,开发者还是调用send(0x53),send(0x53)再调用send_LL(0x53,2402M)(注:2402M为信道频率)。这里还有一个问题,设备B怎么知道这个数据包是发给自己的还是其他人的,为此BLE引入access address****概念,用来指明接收者身份,其中,0x8E89BED6这个access address比较特殊,它表示要发给周边所有设备,即广播。如果你要一对一的进行通信(BLE协议将其称为连接),即设备A的数据包只能设备B接收,同样设备B的数据包只能设备A接收,那么就必须生成一个独特的随机access address以标识设备A和设备B两者之间的连接。

广播方式

我们先来看一下简单的广播情况,这种情况下,我们把设备A叫advertiser(广播者),设备B叫scanner或者observer(扫描者)。广播状态下设备A的LL层API将变成send_LL(0x53,2402M, 0x8E89BED6)。由于设备B可以同时接收到很多设备的广播,因此数据包还必须包含设备A的device address(0xE1022AAB753B)以确认该广播包来自设备A,为此send_LL参数需要变成(0x53,2402M, 0x8E89BED6, 0xE1022AAB753B)。LL层还要检查数据的完整性,即数据在传输过程中有没有发生窜改,为此引入CRC24对数据包进行检验 (假设为0xB2C78E) 。同时为了调制解调电路工作更高效,每一个数据包的最前面会加上1个字节的preamble(前导帧),preamble一般为0x55或者0xAA。这样,整个空中包就变成(注:空中包用小端模式表示!):

广播数据包发送

上面这个数据包还有如下问题:

  1. 没有对数据包进行分类组织,设备B无法找到自己想要的数据0x53。为此我们需要在access address之后加入两个字段:LL header和长度字节。LL header用来表示数据包的LL类型,长度字节用来指明payload的长度
  2. 设备B什么时候开启射频窗口以接收空中数据包?如上图case1所示,当设备A的数据包在空中传输的时候,设备B把接收窗口关闭,此时通信将失败;同样对case2来说,当设备A没有在空中发送数据包时,设备B把接收窗口打开,此时通信也将失败。只有case3的情况,通信才能成功,即设备A的数据包在空中传输时,设备B正好打开射频接收窗口,此时通信才能成功,换句话说,LL****层还必须定义通信时序
  3. 当设备B拿到数据0x53后,该如何解析这个数据呢?它到底表示湿度还是电量,还是别的意思?这个就是GAP层要做的工作,GAP层引入了LTV(Length-Type-Value)结构来定义数据,比如020105,02-长度,01-类型(强制字段,表示广播flag,广播包必须包含该字段),05-值。由于广播包最大只能为31个字节,它能定义的数据类型极其有限,像这里说的电量,GAP就没有定义,因此要通过广播方式把电量数据发出去,只能使用供应商自定义数据类型0xFF,即04FF590053,其中04表示长度,FF表示数据类型(自定义数据),0x0059是供应商ID(自定义数据中的强制字段),0x53就是我们的数据(设备双方约定0x53就是表示电量,而不是其他意思)。

最终空中传输的数据包将变成:

  • AAD6BE898E600E3B75AB2A02E102010504FF5900538EC7B2
    • AA – 前导帧(preamble)
    • D6BE898E – 访问地址(access address)
    • 60 – LL帧头字段(LL header)
    • 0E – 有效数据包长度(payload length)
    • 3B75AB2A02E1 – 广播者设备地址(advertiser address)
    • 02010504FF590053 – ****广播数据
    • 8EC7B2 – CRC24值
image

有了PHY,LL和GAP,就可以发送广播包了,但广播包携带的信息极其有限,而且还有如下几大限制:

  1. 无法进行一对一双向通信 (广播是一对多通信,而且是单方向的通信)
  2. 由于不支持组包和拆包,因此无法传输大数据
  3. 通信不可靠及效率低下。广播信道不能太多,否则将导致扫描端效率低下。为此,BLE只使用37(2402MHz) /38(2426MHz) /39(2480MHz)三个信道进行广播和扫描,因此广播不支持跳频。由于广播是一对多的,所以广播也无法支持ACK。这些都使广播通信变得不可靠。
  4. 扫描端功耗高。由于扫描端不知道设备端何时广播,也不知道设备端选用哪个频道进行广播,扫描端只能拉长扫描窗口时间,并同时对37/38/39三个通道进行扫描,这样功耗就会比较高。

而连接则可以很好解决上述问题,下面我们就来看看连接是如何将0x53发送出去的。

连接方式

到底什么叫连接(connection)?像有线UART,很容易理解,就是用线(Rx和Tx等)把设备A和设备B相连,即为连接。用“线”把两个设备相连,实际是让2个设备有共同的通信媒介,并让两者时钟同步起来。蓝牙连接有何尝不是这个道理,所谓设备****A****和设备B****建立蓝牙连接,就是指设备A****和设备B****两者一对一“同步”成功,其具体包含以下几方面:

  • 设备A和设备B对接下来要使用的物理信道达成一致
  • 设备A和设备B双方建立一个共同的时间锚点,也就是说,把双方的时间原点变成同一个点
  • 设备A和设备B两者时钟同步成功,即双方都知道对方什么时候发送数据包什么时候接收数据包
  • 连接成功后,设备A和设备B通信流程如下所示:
image

如上图所示,一旦设备A和设备B连接成功(此种情况下,我们把设备A称为Master或者Central,把设备B称为Slave或者Peripheral),设备A将周期性以CI(connection interval)为间隔向设备B发送数据包,而设备B也周期性地以CI为间隔打开射频接收窗口以接收设备A的数据包。同时按照蓝牙spec要求,设备B收到设备A数据包150us****后,设备B切换到发送状态,把自己的数据发给设备A;设备A则切换到接收状态,接收设备B发过来的数据。由此可见,连接状态下,设备A和设备B的射频发送和接收窗口都是周期性地有计划地开和关,而且开的时间非常短,从而大大降低系统功耗并大大提高系统效率。

现在我们看看连接状态下是如何把数据0x53发送出去的,从中大家可以体会到蓝牙协议栈分层的妙处。

  • 对开发者来说,很简单,他只需要调用send(0x53)
  • GATT层定义数据的类型和分组,方便起见,我们用0x0013表示电量这种数据类型,这样GATT层把数据打包成130053(小端模式!)
  • ATT层用来选择具体的通信命令,比如读/写/notify/indicate等,这里选择notify命令0x1B,这样数据包变成了:1B130053
  • L2CAP用来指定connection interval(连接间隔),比如每10ms同步一次(CI不体现在数据包中),同时指定逻辑通道编号0004(表示ATT命令),最后把ATT数据长度0x0004加在包头,这样数据就变为:040004001B130053
  • LL层要做的工作很多,首先LL层需要指定用哪个物理信道进行传输(物理信道不体现在数据包中),然后再给此连接分配一个Access address(0x50655DAB)以标识此连接只为设备A和设备B直连服务,然后加上LL header和payload length字段,LL header标识此packet为数据packet,而不是control packet等,payload length为整个L2CAP字段的长度,最后加上CRC24字段,以保证整个packet的数据完整性,所以数据包最后变成:
    • AAAB5D65501E08040004001B130053D550F6
      • AA – 前导帧(preamble)
      • 0x50655DAB – 访问地址(access address)
      • 1E – LL帧头字段(LL header)
      • 08 – 有效数据包长度(payload length)
      • 04000400 – ATT数据长度,以及L2CAP通道编号
      • 1B – notify command
      • 0x0013 – 电量数据handle
      • 0x53 – 真正要发送的电量数据
      • 0xF650D5 – CRC24值
      • 虽然开发者只调用了 send(0x53),但由于低功耗蓝牙协议栈层层打包,最后空中实际传输的数据将变成下图所示的模样,这就既满足了低功耗蓝牙通信的需求,又让用户API变得简单,可谓一箭双雕!
广播数据

上面只是对BLE协议栈实现原理做了一个简单概述,即便如此,由于都是关于BLE协议栈底层的东西,很多开发者还是会觉得比较枯燥和晦涩,而且对很多开发者来说,他们也不关心BLE协议栈是如何实现的,他们更关心的是BLE协议栈的使用,即怎么开发一个BLE应用。BLE应用是实打实的东西,不能像上面讲述协议栈一样泛泛而谈,必须结合具体的蓝牙芯片和蓝牙协议栈来讲解,为此后面将以Nordic芯片及协议栈作为范例,来具体讲解如何开发BLE应用,以及如何通过代码去理解BLE协议中定义的一些概念和术语。

链接:https://www.cnblogs.com/iini/p/8969828.html


L2CAP层详解

L2CAP层即逻辑链路控制与适配层


L2CAP架构图

其主要功能是
L2CAP主要功能:
1.协议信道复用(protocol/channel multiplexing)
2.分段与重组(segmentation and reassembly SAR)
3.每个信道流控(per-channel flow control)
4.差错控制(error control)

链接:https://blog.csdn.net/ylangeia/article/details/87188031?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase


SMP(secure manager protocol)层详解

  • 蓝牙的配对过程中,加密是核心步骤,SMP关乎到蓝牙通信的安全。
  • 在固定信道0x0006中传输数据,0x0006 LE SMP
  • 整个smp过程根据是否支持ble security connection,设备IO capabilities,是否支持OOB(out of band)总共分为6种情况,最终协商确定1种方式实现smp flow。


    SMP.jpg
链接:https://blog.csdn.net/cai472861/article/details/105406242


ATT层详解

ATT层:
1.定义了属性实体的概念,包括UUID、句柄和属性值等;
2.也规定了属性的读、写、通知等操作方法和细节,这些与属性操作相关的内容称为属性协议。
3.ATT层规定了ATT_MTU值,如果属性值很长,超过了ATT_MTU限制,将使用特殊的读写方法进行操作。

链接:https://www.cnblogs.com/yongdaimi/p/11983220.html
https://www.cnblogs.com/hzl6255/p/4141505.html


GATT层详解

GATT(Generic Attribute Profile),描述了一种使用ATT的服务框架
该框架定义了服务(Server)和服务属性(characteristic)的过程(Procedure)及格式
Procedure定义了characteristic的发现、读、写、通知(Notifing)、指示(Indicating)及配置characteristic的广播
GATT中主要的11项特征:

  1. Server Configuration
  2. Primary Service Discovery
  3. Relationship Discovery
  4. Characteristic Discovery
  5. Characteristic Descriptor Discovery
  6. Reading a Characteristic Value
  7. Writing a Characteristic Value
  8. Notification of a Characteristic Value
  9. Indication of a Characteristic Value
  10. Reading a Characteristic Descriptor
  11. Writing a Characteristic Descriptor
链接:https://www.cnblogs.com/hzl6255/p/4158363.html


项目中开发包括配对绑定,BLE地址分析相关的博客文档

https://blog.csdn.net/UFOfuck/article/details/102708853
http://www.wowotech.net/bluetooth/ble_address_type.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352

推荐阅读更多精彩内容