即插即用!Triplet注意力机制让Channel和Spatial交互更加丰富

姓名:韩宜真

学号:17020120095

转载自:https://mp.weixin.qq.com/s/Nn5sLt_0MIaXNYxKv0N1Hg

【嵌牛导读】本文中研究了轻量且有效的注意力机制,并提出了Triplet Attention。

【嵌牛鼻子】Triplet Attention

【嵌牛提问】这种注意力机制是怎样的?

【嵌牛正文】

1、简介和相关方法

最近许多工作提出使用Channel Attention或Spatial Attention,或两者结合起来提高神经网络的性能。这些Attention机制通过建立Channel之间的依赖关系或加权空间注意Mask有能力改善由标准CNN生成的特征表示。学习注意力权重背后是让网络有能力学习关注哪里,并进一步关注目标对象。这里列举一些具有代表的工作:

1、SENet(Squeeze and Excite module)

2、CBAM(Convolutional Block Attention Module)

3、BAM(Bottleneck Attention Module)

4、Grad-CAM

5、Grad-CAM++

6、-Nets(Double Attention Networks)

7、NL(Non-Local blocks)

8、GSoP-Net(Global Second order Pooling Networks)

9、GC-Net(Global Context Networks)

10、CC-Net(Criss-Cross Networks)

11、SPNet

等等方法(这些方法都值得大家去学习和调研,说不定会给你的项目带来意想不到的效果)。

以上大多数方法都有明显的缺点(Cross-dimension),Triplet Attention解决了这些缺点。Triplet Attention模块旨在捕捉Cross-dimension交互,从而能够在一个合理的计算开销内(与上述方法相比可以忽略不计)提供显著的性能收益。

2、本文方法

2.1、分析

本文的目标是研究如何在不涉及任何维数降低的情况下建立廉价但有效的通道注意力模型。Triplet Attention不像CBAM和SENet需要一定数量的可学习参数来建立通道间的依赖关系,本文提出了一个几乎无参数的注意机制来建模通道注意和空间注意,即Triplet Attention。

2.2、Triplet Attention

所提出的Triplet Attention见下图所示。顾名思义,Triplet Attention由3个平行的Branch组成,其中两个负责捕获通道C和空间H或W之间的跨维交互。最后一个Branch类似于CBAM,用于构建Spatial Attention。最终3个Branch的输出使用平均进行聚合。

1、Cross-Dimension Interaction

传统的计算通道注意力的方法涉及计算一个权值,然后使用权值统一缩放这些特征图。但是在考虑这种方法时,有一个重要的缺失。通常,为了计算这些通道的权值,输入张量在空间上通过全局平均池化分解为一个像素。这导致了空间信息的大量丢失,因此在单像素通道上计算注意力时,通道维数和空间维数之间的相互依赖性也不存在。

虽然后期提出基于Spatial和Channel的CBAM模型缓解了空间相互依赖的问题,但是依然存在一个问题,即,通道注意和空间注意是分离的,计算是相互独立的。基于建立空间注意力的方法,本文提出了跨维度交互作用(cross dimension interaction)的概念,通过捕捉空间维度和输入张量通道维度之间的交互作用,解决了这一问题。

这里是通过三个分支分别捕捉输入张量的(C, H),(C, W)和(H, W)维间的依赖关系来引入Triplet Attention中的跨维交互作用。

2、Z-pool

Z-pool层负责将C维度的Tensor缩减到2维,将该维上的平均汇集特征和最大汇集特征连接起来。这使得该层能够保留实际张量的丰富表示,同时缩小其深度以使进一步的计算量更轻。可以用下式表示:

classChannelPool(nn.Module):

defforward(self, x):

returntorch.cat((torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=11)

3、Triplet Attention

给定一个输入张量,首先将其传递到Triplet Attention模块中的三个分支中。

在第1个分支中,在H维度和C维度之间建立了交互:

为了实现这一点,输入张量沿H轴逆时针旋转90°。这个旋转张量表示为的形状为(W×H×C),再然后经过Z-Pool后的张量的shape为(2×H×C),然后,通过内核大小为k×k的标准卷积层,再通过批处理归一化层,提供维数(1×H×C)的中间输出。然后,通过将张量通过sigmoid来生成的注意力权值。在最后输出是沿着H轴进行顺时针旋转90°保持和输入的shape一致。

在第2个分支中,在C维度和W维度之间建立了交互:

为了实现这一点,输入张量沿W轴逆时针旋转90°。这个旋转张量表示为的形状为(H×C×W),再然后经过Z-Pool后的张量的shape为(2×C×W ),然后,通过内核大小为k×k的标准卷积层,再通过批处理归一化层,提供维数(1×C×W)的中间输出。然后,通过将张量通过sigmoid来生成的注意力权值。在最后输出是沿着W轴进行顺时针旋转90°保持和输入的shape一致。

在第3个分支中,在H维度和W维度之间建立了交互:

输入张量的通道通过Z-pool将变量简化为2。将这个形状的简化张量(2×H×W)简化后通过核大小k定义的标准卷积层,然后通过批处理归一化层。输出通过sigmoid激活层生成形状为(1×H×W)的注意权值,并将其应用于输入,得到结果。然后通过简单的平均将3个分支产生的精细张量(C×H×W)聚合在一起。

**最终输出的Tensor:

classBasicConv(nn.Module):

def__init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False):

super(BasicConv, self).__init__()

self.out_channels = out_planes

self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)

self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True)ifbnelseNone

self.relu = nn.ReLU()ifreluelseNone

defforward(self, x):

x = self.conv(x)

ifself.bnisnotNone:

x = self.bn(x)

ifself.reluisnotNone:

x = self.relu(x)

returnx

classChannelPool(nn.Module):

defforward(self, x):

returntorch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1)

classSpatialGate(nn.Module):

def__init__(self):

super(SpatialGate, self).__init__()

kernel_size =7

self.compress = ChannelPool()

self.spatial = BasicConv(2,1, kernel_size, stride=1, padding=(kernel_size-1) //2, relu=False)

defforward(self, x):

x_compress = self.compress(x)

x_out = self.spatial(x_compress)

scale = torch.sigmoid_(x_out)

returnx * scale

classTripletAttention(nn.Module):

def__init__(self, gate_channels, reduction_ratio=16, pool_types=['avg','max'], no_spatial=False):

super(TripletAttention, self).__init__()

self.ChannelGateH = SpatialGate()

self.ChannelGateW = SpatialGate()

self.no_spatial=no_spatial

ifnotno_spatial:

self.SpatialGate = SpatialGate()

defforward(self, x):

x_perm1 = x.permute(0,2,1,3).contiguous()

x_out1 = self.ChannelGateH(x_perm1)

x_out11 = x_out1.permute(0,2,1,3).contiguous()

x_perm2 = x.permute(0,3,2,1).contiguous()

x_out2 = self.ChannelGateW(x_perm2)

x_out21 = x_out2.permute(0,3,2,1).contiguous()

ifnotself.no_spatial:

x_out = self.SpatialGate(x)

x_out = (1/3)*(x_out + x_out11 + x_out21)

else:

x_out = (1/2)*(x_out11 + x_out21)

returnx_out

4、Complexity Analysis

通过与其他标准注意力机制的比较,验证了Triplet Attention的效率,C为该层的输入通道数,r为MLP在计算通道注意力时瓶颈处使用的缩减比,用于2D卷积的核大小用k表示,k<<

3、实验结果

3.1、图像分类实验

3.2、目标检测实验

3.3、消融实验

3.4、HeatMap输出对比

4、总结

在这项工作中提出了一个新的注意力机制Triplet Attention,它抓住了张量中各个维度特征的重要性。Triplet Attention使用了一种有效的注意计算方法,不存在任何信息瓶颈。实验证明,Triplet Attention提高了ResNet和MobileNet等标准神经网络架构在ImageNet上的图像分类和MS COCO上的目标检测等任务上的Baseline性能,而只引入了最小的计算开销。是一个非常不错的即插即用的注意力模块。

更为详细内容可以参见论文中的描述。

References

[1] Rotate to Attend: Convolutional Triplet Attention Module

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容