利用 SVD 实现协同过滤推荐算法

奇异值分解(Singular Value Decomposition,以下简称SVD)
是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。

优点:简化数据,去除噪声,提高算法的结果。
缺点:数据的转换可能难以理解。

应用领域:推荐引擎(协同过滤、相似度计算)、图像压缩等。

SVD定义:如果我们求出了矩阵A的n个特征值λ1≤λ2≤...≤λn,以及这n个特征值所对应的特征向量{w1,w2,...wn},如果这n个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:A=WΣW−1,其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。一般我们会把W的这n个特征向量标准化,即满足||wi||2=1, 或者wiTwi=1,此时W的n个特征向量为标准正交基,满WTW=I,即WT=W−1, 也就是说W为酉矩阵。要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,则用到SVD。

矩阵A的SVD为:A=UΣVT,其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足UTU=I,VTV=I。

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。

因此SVD 也是一种强大的降维工具,可以利用 SVD 来逼近矩阵并从中获得主要的特征。通过保留矩阵的 80%~90% 的能量,就可以得到重用的特征并去除噪声。

推荐系统是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。
主要有以下几种推荐算法:
基于内容的推荐(用到自然语言处理),协同过滤(主流),基于规则推荐(基于最多用户点击,最多用户浏览等),混合推荐(类似集成算法,投票决定),基于人口统计信息的推荐(根据用户基本信息)

协同过滤推荐分为三种类型。第一种是基于用户(user-based)的协同过滤(需要在线找用户和用户之间的相似度关系),第二种是基于项目(item-based)的协同过滤(基于项目的协同过滤可以离线找物品和物品之间的相似度关系),第三种是基于模型(model based)的协同过滤(用户和物品,主流)。

一般在推荐系统中,数据往往是使用 用户-物品 矩阵来表示的。用户对其接触过的物品进行评分,评分表示了用户对于物品的喜爱程度,分数越高,表示用户越喜欢这个物品。而这个矩阵往往是稀疏的,空白项是用户还未接触到的物品,推荐系统的任务则是选择其中的部分物品推荐给用户。

对于这个 用户-物品 矩阵,用已有的部分稀疏数据来预测那些空白的物品和数据之间的评分关系,找到最高评分的物品推荐给用户。

具体基于模型的方法有:
用关联算法做协同过滤(Apriori算法、FP Tree算法)
用聚类算法做协同过滤(针对基于用户或者基于模型,Kmeans,DBSCAN)
用分类算法做协同过滤(设定评分阈值,高于推荐,低于不推荐,逻辑回归和朴素贝叶斯,解释性很强)
用回归算法做协同过滤(Ridge回归,回归树)
用矩阵分解做协同过滤(由于传统的奇异值分解SVD要求矩阵不能有缺失数据,必须是稠密的,而用户物品评分矩阵是一个典型的稀疏矩阵,主要是SVD的一些变种,比如FunkSVD,BiasSVD和SVD++。这些算法和传统SVD的最大区别是不再要求将矩阵分解为UΣVT的形式,而变是两个低秩矩阵PTQ的乘积形式。)
用神经网络做协同过滤(限制玻尔兹曼机RBM)

在 Python 的 numpy 中,linalg已经实现了SVD

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容