Python的小数据存储,用什么格式更有逼格?

小数据存储

我们在编写代码的时候,经常会涉及到数据存储的情况,如果是爬虫得到的大数据,我们会选择使用数据库,或者excel存储。但如果只是一些小数据,或者说关联性较强且存在存储后复用的数据,我们该如何存储呢?

使用open保存文本

最简单、粗暴+无脑的存储方式就是保存成一个文本文档了。
使用open函数,将结果一行行的保存成文本,这里涉及的知识点只有简单的几条:

  • 文件读写模式,r 、w、a、b、+ ,掌握这几种即可。

  • 使用单独的open打开文件时,需要注意结尾时的调用close()函数关闭文档

  • 推荐使用上下文管理器的with open操作

csv文件

之所以将csv与excel分开说,首先需要扫盲下,csv属于特定格式的文本文件(使用逗号分隔),而excel是二进制文件。
csv可以直接使用文本编辑器打开,excel不行…
其实csv文件,完全可以使用open函数进行保存,只要你将每行数据都使用,分隔开即可。
另外,python自带csv库,可以很方便的操作与保存该数据

xml文件

xml文件的方式,已经逐渐被淘汰了,为什么这么说?因为它繁琐的树形结构,导致了在传输过程中,占用了更多的内存。所以,除非必要,真的不推荐以xml的形式存储你的数据…

configparser

python模块中configparser是一个专门用来保存配置文件的模块库,它非常适合保存一些具有关联性的数据内容,尤其是配置文件。通过定义section的方式,在section中添加key:value的方式,可以直观明了的数据内容。我之前专门写了一篇关于它的文章,会附在公众号的字文章中,喜欢的朋友可以去看看。

pyyaml

yaml类型的文件已经成为很多Linux下的主流配置文件类型,比如Docker、Ansible等等都在使用yaml,但它依然不是一个主流的数据存储方式,因为yaml本身的格式要求太过严苛,比结构化的Python格式更为严格,喜欢的朋友可以去研究下…

pickle

pickle模块的使用面很窄,但不得不说还是有些人会使用,所以简单说些它的优劣:
优势:接口简单(与json相似);存储格式通用型,及在Windows、Linux等平台下通用;二进制存储,效率高
劣势:pickle是python特定的协议,其他语言无法使用;pickle存在安全性,这个要着重说下,看下图

pickle安全性
Json文件

说了上面那么多,压轴的还是Json
首先相对于xml,现在更多的网站在数据传输中使用json格式,因为同等的字节下,json传输数据的效率要更高于xml。

json与xml对比

对于configparser,configparser有一个巨大的劣势,在于配置文件只能支持二维,section下定义option(key:value),如果想在option的value中再次定义列表、字典等数据类型,它只能识别为字符串,你需要将str手动再转化为对应的数据类型
而针对ymal,json没有那么严格的格式要求,写做一行还是换行展示都随你,没有那么严苛的要求。
最后对比pickle,json格式是各种编程语言通用的数据格式,由于是key value的键值对,不存在loads之后的安全问题。而且你学会了json,也就学会了pickle,因为二者的使用方式一毛一样啊!

三分钟学会Json1.
简介

JSON(JavaScript Object Notation, JS 对象简谱) 是一种轻量级的数据交换格式。它基于 ECMAScript (欧洲计算机协会制定的js规范)的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得 JSON 成为理想的数据交换语言。易于人阅读和编写,同时也易于机器解析和生成,并有效地提升网络传输效率。

至于推荐使用Json的理由:

  1. Json格式是一种通用的数据类型

  2. Python内置json模块,便于操作

  3. json格式类似于python的dict

  4. json的保存与读取极为方便

  5. 学习成本低,3分钟包教包会

类型、语法说明
python与json数据类型

<figcaption style="margin: 10px 0px 0px; padding: 0px; max-width: 100%; overflow-wrap: break-word !important; box-sizing: border-box !important; line-height: inherit; text-align: center; color: rgb(153, 153, 153); font-size: 0.7em;">python与json数据类型</figcaption>

看到上图的Python与json对比关系,其实差异并不大,我们只需要注意几点即可:

  1. Json格式是一种通用的数据类型

  2. Python内置json模块,便于操作

  3. json格式类似于python的dict

  4. json的保存与读取极为方便

  5. 学习成本低,3分钟包教包会

json的方法

.dump():将python对象序列化到一个文件,是文本文件,相当于将序列化后的json字符写到一个文件
.load():从文件反序列表出python对象
json和pickle相同,都只有四个方法:
.dumps():将python对象编码为json的字符串
.loads():将字符串编码为一个python对象

即:带s的方法是数据类型间的转化str <--> dict,不带s的都是数据与文件的转化

实例

在演示前,我们需要先定义一个初始化数据:

data = {
    "in_use": True,
    "info": {
        "name_cn": '清风Python',
        "name_en": "BreezePython",
    },
    "contents": ["Python", "Java", "Linux"]

}

.dumps() .loads()

import json
json.dumps(data)
>>> '{"in_use": true, "info": {"name_cn": "\\u6e05\\u98cePython", "name_en": "BreezePython"}, "contents": ["Python", "Java", "Linux"]}'
这里大家看到一个问题,中文异常,此时我们需要添加参数ensure_ascii=False
json.dumps(data,ensure_ascii=False)
>>> '{"in_use": true, "info": {"name_cn": "清风Python", "name_en": "BreezePython"}, "contents": ["Python", "Java", "Linux"]}'
# 当然我们可以美观的打印它
json_data = json.dumps(data, sort_keys=True, indent=4, separators=(',', ': '),ensure_ascii=False)
print(json_data)
>>> {
    "contents": [
        "Python",
        "Java",
        "Linux"
    ],
    "in_use": true,
    "info": {
        "name_cn": "清风Python",
        "name_en": "BreezePython"
    }
}

# 了解了dumps,loads就比较简单了...
json.loads(json_data)
{'contents': ['Python', 'Java', 'Linux'], 'in_use': True, 'info': {'name_cn': '清风Python', 'name_en': 'BreezePython'}}

.dump() .load()

import json
# 先来看看dump将数据保存至文本
with open('data.json', 'w', encoding='utf-8') as f:
    json.dump(data, f, indent=4)
    # 同理我们还可以使用dumps完成写入操作
    # f.write(json.dumps(data, indent=4))

# 保存了文本,我们在通过load读取出来
with open('data.json', 'r', encoding='utf-8') as f:
    data = json.load(f)
    # 同理我们还可以使用loads完成读取操作
    # data = json.loads(f.read())
print(data)
>>> {'in_use': True, 'info': {'name_cn': '清风Python', 'name_en': 'BreezePython'}, 'contents': ['Python', 'Java', 'Linux']}

看到这里,你是否发现,即便不会dump和load我们一样可以使用dumps和loads替换前两者,完成读写操作。三分钟学会了json的操作,并且买一送一附带学会了pickle的操作。你是否get到?

The End

期待你关注我的公众号清风Python,如果你觉得不错,希望能动动手指转发给你身边的朋友们。
我的github地址:https://github.com/BreezePython

往期精彩回顾

将安卓手机打造成你的python全栈开发利器

使用python假装黑客,批量破解朋友的网站密码

Python开发GUI,图片转换素描画工具

程序员的自我救赎,使用python开发性格分析工具

寒冬袭来,带你使用Flask开发一款天气查询软件吧

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容