问题1
- The cuda backend is deprecated and will be removed in the next release (v0.10). Please switch to the gpuarray backend. You can get more information about how to switch at this URL:
https://github.com/Theano/Theano/wiki/Converting-to-the-new-gpu-back-end%28gpuarray%29 (还可能引起这个问题:current context was not created by the StreamExecutor cuda_driver API: 0000028DC2D757B0; a CUDA runtime call was likely performed without using a StreamExecutor context) - 原因:
cuda后台在下一个版本会被废弃,需要改成gpuarray后台,异常说的很清楚。 - 解决方法:
直接查看链接,照着链接上的改下。一般是这几个步骤: - 安装:
- 安装libgpuarray
- 使用theano最新版本(0.9) Theano dev version
- 或者直接使用conda 命令安装
conda install theano pygpu
- 把theano的配置文件
.theanorc.txt
,把device=gpu改成device=cuda or cuda0, ...
问题2
- The TensorFlow library wasn't compiled to use SSE instructions...
- 原因:tensorflow不是自己编译的
- 解决方法:
自己编译,或者买个显卡,或者无视(如果有GPU可以忽略这个问题)
问题3
- Loaded runtime CuDNN library: 5005 (compatibility version 5000) but source was compiled with 5103 (compatibility version 5100). If using a binary install, upgrade your CuDNN library to match. If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.
- 原因:cudnn版本和cuda不兼容
- 解决方法:
官网更新cudnn后,拷贝cuDNN库文件到cuda目录下
问题4
- vs安装完成后运行deviceQuery,如果result=pass即为成功
问题5(python3中出现)
- 在import theano后出现Theano ImportError:cannot import name 'configparser'问题
- 原因: 和python的configparser冲突
- 解决方法:
- 不要在环境变量添加PYTHONPATH变量
- 如果非要加环境变量,那就把theano下的configparser改名,如configparser_tf,然后在运行一段theano的代码,依次改掉出错的地方
问题6
- import时可能会出现WARNING (theano.configdefaults): g++ not detected ! Theano will be unable to execute optimized C-implementations (for both CPU and GPU) and will default to Python implementations. Performance will be severely degraded. To remove this warning, set Theano flags cxx to an empty string.
- 原因: 缺少mingw
- 解决方法:
- conda install mingw libpython
问题7
- ERROR: Failure: ImportError (No module named nose_parameterized)
- 解决方法:
- pip install nose_parameterized
问题8
- 如果遇到很奇怪的错,将 C:\Users\你的用户名\AppData\local\Theano下的缓存清除