spark 基础三: 共享变量(Broadcast Variable和Accumulator)

共享变量

spark一个非常重要的特性就是共享变量
默认情况下,如果在一个算子的函数中使用到了某个外部的变量,那么这个变量的值会被拷贝到每个task(线程)中,此时,每个task只能操作自己的那份变量副本,如果多个task想要共享某个变量,默认情况下是做不到的

spark为此提供了两种共享变量,
Broadcast Variable(广播变量):会将使用到的变量,仅仅为每个节点拷贝一份,BroadcastVariable是只读的,主要用处是优化性能,通过减少变量到各个节点的网络传输消耗,以及在各个节点上的内存消耗;

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
 * @author Administrator
 */
object BroadcastVariable {
  
  def main(args: Array[String]) {
    val conf = new SparkConf()
        .setAppName("BroadcastVariable")  
        .setMaster("local")  
    val sc = new SparkContext(conf)
  
    val factor = 3;
    val factorBroadcast = sc.broadcast(factor)  
    
    val numberArray = Array(1, 2, 3, 4, 5) 
    val numbers = sc.parallelize(numberArray, 1)  
    val multipleNumbers = numbers.map { num => num * factorBroadcast.value }  
    
    multipleNumbers.foreach { num => println(num) }  
  }
  
}
--------------------------------------------------------------------------------------------
import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.broadcast.Broadcast;

/**
 * 广播变量
 * @author Administrator
 *
 */
public class BroadcastVariable {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setAppName("BroadcastVariable") 
                .setMaster("local"); 
        JavaSparkContext sc = new JavaSparkContext(conf);
    
        // 在java中,创建共享变量,就是调用SparkContext的broadcast()方法
        // 获取的返回结果是Broadcast<T>类型
        final int factor = 3;
        final Broadcast<Integer> factorBroadcast = sc.broadcast(factor);
        
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5);
        
        JavaRDD<Integer> numbers = sc.parallelize(numberList);
        
        // 让集合中的每个数字,都乘以外部定义的那个factor
        JavaRDD<Integer> multipleNumbers = numbers.map(new Function<Integer, Integer>() {

            private static final long serialVersionUID = 1L;
            
            @Override
            public Integer call(Integer v1) throws Exception {
                // 使用共享变量时,调用其value()方法,即可获取其内部封装的值
                int factor = factorBroadcast.value();
                return v1 * factor;
            }
            
        });
        
        multipleNumbers.foreach(new VoidFunction<Integer>() {
            
            private static final long serialVersionUID = 1L;
            
            @Override
            public void call(Integer t) throws Exception {
                System.out.println(t);  
            }
            
        });
        
        sc.close();
    }
    
}

Accumulator(累加变量):可以让多个task共同操作一份变量,主要用于多个节点对一个变量进行共享性的操作,比如累加操作。但是task只能对Accumulator进行累加操作,不能读取他的值,只有Driver才可以读取Accumulator的值。

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
 * @author Administrator
 */
object AccumulatorVariable {
  
  def main(args: Array[String]) {
    val conf = new SparkConf()
        .setAppName("AccumulatorVariable")  
        .setMaster("local")  
    val sc = new SparkContext(conf)
    
    val sum = sc.accumulator(0)  
    
    val numberArray = Array(1, 2, 3, 4, 5) 
    val numbers = sc.parallelize(numberArray, 1)  
    numbers.foreach { num => sum += num }  
    
    println(sum) 
  }
  
}
------------------------------------------------------------------------------------
/**
 * 累加变量
 * @author Administrator
 *
 */
public class AccumulatorVariable {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setAppName("Accumulator") 
                .setMaster("local");
        JavaSparkContext sc = new JavaSparkContext(conf);
    
        // 创建Accumulator变量
        // 需要调用SparkContext的accumulator()方法
        final Accumulator<Integer> sum = sc.accumulator(0);
        
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);
        
        numbers.foreach(new VoidFunction<Integer>() {
            
            private static final long serialVersionUID = 1L;

            @Override
            public void call(Integer t) throws Exception {
                // 然后在函数内部,就可以对Accumulator变量,调用add()方法,累加值
                sum.add(t);  
            }
            
        });
        
        // 在driver程序中,可以调用Accumulator的value()方法,获取其值
        System.out.println(sum.value());  
        
        sc.close();
    }
    
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容