我记得非常清楚,我是在初中二年级的第二个学期开始在上午的课堂上打瞌睡的。在此之前,我的成绩一直都是全校第一名,是的,从没考过第二名。说这个并不是为了炫耀,毕竟我都快30岁了,如果还在为初中的名次而沾沾自喜也未免太傻逼了。之所以提这个主要是为了交代背景。我相信绝大多数人都没有体会过这种从来都是全校第一名的压力,毕竟一个学校才有一个名额。所以这事让我感到困惑和恐慌:我像往常一样规律的作息,除此之外什么都没做,为什么会在课堂上打瞌睡?我这第一名还能不能继续保持?所以每次要打瞌睡的时候,我都会把头低到桌子底下,狠狠抽自己两嘴巴。然而这并没有起到作用,我依然瞌睡不止。
后来终于发生了我最担心的事情:我他妈在一次期末考试中考砸了,居然只考了全校第四名。看到自己的名字排在第四的位置上,之后整整一个暑假我都被这一刻的恐惧所支配,也明白了惶惶不可终日是怎样一种体验。我当然不敢奢望别人能够感同身受,但当时我真的就像是一个小女孩在放学回家路上被人套了麻袋,然后拉到一个黑暗的角落强奸。完了我也不知道对方长什么样,更不敢告诉任何人。长久以来第一名的巨大压力终于带来了巨大的心理崩溃,新学期开始我就心安理得的在课堂上睡觉,看小说,半夜翻墙出去打游戏。成为好学生迅速堕落的一个典型。
直到多年以后,我才意识到,自己是在那个时候进入青春期的。虽然表面上什么都没做,但身体在那个时候明显需要更多的睡眠,我猜。自从生理上成熟之后,我就变成了一个夜猫子。典型的症状就是晚上睡不着早上起不来。而且我发现这种症状在年轻人中非常普遍的,我并不是孤例。
我曾经跟许多朋友说我生错了时区。这种想法在我去土耳其期间得到了验证。伊斯坦布尔和北京隔着6个时区。我到了那边根本不需要倒时差,每天早晨6点精神饱满的从床上醒来,没有丝毫痛苦,晚上10点沾床即睡,没有丝毫困难。在土耳其的那十多天里,我好像突然找回了童年的那种充沛精力,能感受到所有的事情都在正确的位置上,这让我无比享受。后来我就想,我在国内如果也能凌晨四点睡觉,然后睡到中午十二点起床,那将是多么美好的一件事啊。
于是回国后我立马就辞了职,开始尝试这种美好生活。但接下来发生的又让我痛苦不堪。
在不用上班的日子里,我发现自己每天的入睡和醒来的时间都比前一天要晚一点,于是我又陷入了新的麻烦之中。后来在维基百科上得知这是一种病,学名叫睡眠相位后移综合症(简称DSPS)。这种睡眠障碍多发于青少年,由于大众对这种疾病的认识不够,导致了DSPS患者(绝大部分是学生)承受了更多来自学校和家庭的压力,他们无一例外的被视为无纪律或懒惰。而且绝大多数病患(比如我)同样没意识到这是一种生理疾病,也觉得这就是懒。即便是现在,我相信也不会有很多人觉得,因为生物钟的问题,对我们的生活产生如此大的影响,甚至可能改变了我们的整个人生。想想吧,一个人始终生活在倒时差的痛苦中,他怎么能过好他的生活?于是我又不得不用上班来强制规律我的生物钟,然后继续把终日精神不振痛苦不堪的体验归结于自己的懒惰。
直到我在纽约时报上看到一篇报道:《生物钟如何影响我们的思想和情感》。这篇文章报道了两个大学的科研团队在对生物钟的基因进行研究。研究结果显示,抑郁症患者的大脑生物钟与其本人不在同一个时区。“看上去就像这些人的生物钟是日本时间或德国时间。”虽然这些科学家们暂时还没有取得突破性的进展,但我真的真的很高兴有一群人意识到这是一个很重要的问题,并且他们在尝试着手解决。我想说的是,我们在青春期里遭遇的由生理发育带来的心理变化从来都缺乏关注,而且只要在这一人生的敏感时期你表现得有些反常,都被大人们简单粗暴的归纳为“青春期逆反心理”,并且认为这是正常的,然后等我们成年之后,竟然也会这么在内心默许。
以下是我和朋友BESS对这篇文章所做的翻译和原文:
(因为能力有限,如果你发现翻译错误,欢迎在留言中指正,在此先行谢过。)
生物钟如何影响我们的思想和情感
摘要:生物钟就像人体内部的闹钟,早上将我们唤醒,夜晚催我们入眠。不仅如此,生物钟甚至还影响着我们的思想和感情。心理学家通过认知测试发现,人在不同时段擅长做的事情不尽相同。抑郁症、情感障碍等心理疾病也与睡眠和活动周期相关:病患多在夜间失眠,或在白天感到昏昏沉沉。
从早到晚,我们体内的生物钟都在永不停歇的工作。它会在早晨叫醒我们,也会在夜晚让我们睡觉。它会在适当的时候升高或降低我们的体温,并且调节胰岛素和其他激素的分泌。生物钟甚至会影响我们的思维和感觉。心理学家通过对人们在不同时间段内进行认知测试,测量出生物钟对大脑的一些影响。
数据显示,上午是做心算的最好时间,因为心算要求我们在大脑里同时处理许多条信息。下午更适合做一些简单的工作,比如在一张胡乱写满的纸上找到一个特定的字母。另外一个关于我们脑内的生物钟的线索来自有问题的人们,比如:抑郁症或者躁郁症患者。患有此类疾病的人们经常在夜里无法入睡,或在白天昏昏沉沉。一些患有“日落综合症”的人会在太阳落山时会变得混乱和狂躁。密歇根大学神经系统科学家Huda Akil说:“生物钟紊乱是导致精神疾病的很大一部分原因。”然而神经系统科学家很难彻底搞清楚生物钟如何影响我们的大脑。毕竟,我们不能简单的打开被调查者的大脑,然后每天监控他的大脑细胞。
一些年前,Akil博士和她的同事有了一个好点子。
Akil博士和她的同事想要通过观察,根据捐献者脑死时间的不同,大脑是否会有差异。加利福尼亚大学欧文分校正好收集了一些为科学捐献的大脑。Akil博士解释说:“也许这有些愚蠢,但之前没有人想过这些。”她和研究团队选了55个因为事故而去世的健康人的大脑。研究人员从每个大脑中选取关于学习记忆和情绪的组织。人在突然因故逝去的时候,他的脑细胞依旧正在通过某些基因制造蛋白质。因为大脑被快速保护了,所以科学家依旧可以在人体死亡的时候测量这些基因的活动。
观察结果显示:大多数基因在一天中的活动并没有规律可言,但有超过1000个基因每天都会重复一次循环,同时间脑死的捐献者的基因活动频率是相同的。这些基因活动的循环模式非常统一,因此可以把这些基因看成一个时间戳。“我们可以问‘这个人是什么时候死的?’”Akil博士说,“然后我们可以将此时间精确到距离其实际死亡时间的一小时内。”之后她和她的同事们对34个死前有抑郁症的人们进行了相同的大脑分析。他们发现他们的时间戳截然不同。“看上去就像这些人的生物钟是日本时间或德国时间。”
Akil博士和她的同事们在2013年发表了他们的研究成果后,激发了匹兹堡医学院的研究者们想要复制他们的实验。“这些事我们之前从未想过要做。”神经系统科学家 Colleen A. McClung解释道。McClung博士的研究团队进行了一个样本更多的实验,该实验测试了146个捐献的大脑。研究者们本周在《美国国家科学院院刊》上发表了他们的研究结果。
“你瞧,我们得到了很完整的变化规律。” McClung博士说,“这些真的看起来就象是大脑在死亡瞬间的快照。”
Akil 博士十分感谢另外一个团队对她的发现所作出后续研究。“有很多观察结果都有重叠,使得我们相信这个研究的重要性。”但与此同时,McClung博士和她的同事也得到了一些新发现。他们对比了年轻人和老人的基因图谱,发现了其中有趣的差异。
科学家们认为可以找到生物钟会随着年龄变化的线索。“当人们变老时,他们的生物钟变得不稳定并会向前相位移动。” McClung博士解释道。她发现一些基因在年轻人的身体里有强烈的日常循环活动,而在超过60岁的老人身体里,这个强烈活动消失了。很有可能是因为老年人的脑内停止了生产维系生物钟的蛋白质。然而,出乎他们意料的是,研究人员还发现一些基因只在人体年老时变得活跃。“看上去,大脑想要追加一个候补生物钟进行补偿。”
Akil博士推断大脑之所以制造并运行一个候补生物钟是为了降低老年人患上神经退行性疾病的机率(例如帕金森氏病,译者按)。“至少,候补生物钟可以鉴别你身体有没有真正的老化。”她说。最终,它甚至有可能成为治愈一系列和生物钟相关疾病的方法。Akil博士还表示,有关人类大脑中生物钟基因的发现将有助于科学家们开展一系列动物实验,从而找出这些基因真正的作用。“不用再坐在实验室里猜测到底哪些才是有重要功能的基因了,现在人类大脑将会指明方向,‘它究竟想要告诉我们什么?’”。
以下是英文原文报道:
生物钟如何影响我们的思想和情感?
Throughout the day, a clock ticks inside our bodies. It rouses us in the morning and makes us sleepy at night. It raises and lowers our body temperature at the right times, and regulates the production of insulin and other hormones.
The body’s circadian clock even influences our thoughts and feelings. Psychologists have measured some of its effects on the brain by having people take cognitive tests at different times of day.
As it turns out, late morning turns out to be the best time to try doing tasks such as mental arithmetic that demand that we hold several pieces of information in mind at once. Later in the afternoon is the time to attempt simpler tasks, like searching for a particular letter in a page of gibberish.
Another clue about the clock in our brains comes from people with conditions such as depression and bipolar disorder. People with these disorders often have trouble sleeping at night, or feel groggy during the day. Some people with dementia experience “sundowning,” becoming confused or aggressive at the end of the day.
“Sleep and activity cycles are a very big part of psychiatric illnesses,” said Huda Akil, a neuroscientist at the University of Michigan.
Yet neuroscientists have struggled to understand exactly how the circadian clock affects our minds. After all, researchers can’t simply pop open a subject’s skull and monitor his brain cells over the course of each day.
A few years ago, Dr. Akil and her colleagues came up with an idea for the next best thing.
The University of California, Irvine, stores brains donated to science. Some of their former owners died in the morning, some in the afternoon and others at night. Dr. Akil and her colleagues wondered if there were differences in the brains depending on the time of day the donors had died.
“Maybe it’s simple-minded, but nobody had thought of it,” Dr. Akil said.
She and her colleagues selected brains from 55 healthy people whose causes of death were sudden, such as in car crashes. From each brain, the researchers sliced tissue from regions important for learning, memory and emotions.
As each person died, his brain cells were in the midst of making proteins from certain genes. Because the brains had been quickly preserved, the scientists could still measure the activity of those genes at the time of death.
Most of the genes they examined didn’t show any regular pattern of activity over the course of the day. But they found that more than 1,000 genes followed a daily cycle. People who died at the same time of day were making those genes at the same levels.
The patterns were so consistent that the genes could act as a timestamp.
“We could ask, ‘What time did this person die?’” Dr. Akil said. “And we could pin it to within an hour of their actual recorded time of death.”
She and her colleagues then ran the same analysis on the brains of 34 people who had had major depression before dying. Now they found that the time stamp was wildly off the mark.
“It looked as if people were on Japan time or Germany time,” Dr. Akil said.
Dr. Akil and her colleagues published their results in 2013, inspiring researchers at the University of Pittsburgh School of Medicine to attempt to replicate them.
“It was something we didn’t think we could do before,” the neuroscientist Colleen A. McClung said.
Dr. McClung and her colleagues performed a bigger version of the study, examining 146 brains collected by the university’s donor program. The researchers published their results this week in The Proceedings of the National Academy of Sciences.
“Lo and behold, we got very nice rhythms,” Dr. McClung said. “It really seems like a snapshot of where the brain was at that moment of death.”
Dr. Akil is grateful that another team of researchers took the effort to back up her findings. “There is a lot of overlap, which makes you believe something is going on for real here,” she said.
But Dr. McClung and her colleagues also did something no one had. They compared the patterns of gene expression in the brains of young and old people and found intriguing differences.
The scientists hoped to find clues to why people’s circadian cycles change as they age. “As people get older, their rhythms tend to deteriorate and shift forward,” Dr. McClung said.
She found that some of the genes that were active in strong daily cycles in young people faded in people older than 60. It’s possible that some older adults stop producing proteins in their brains needed to maintain circadian rhythms.
To their surprise, however, the researchers also discovered some genes that became active in daily cycles only in old age. “It looks like the brain might be trying to compensate by turning on an additional clock,” Dr. McClung said.
Dr. Akil speculated that the brain’s ability to cobble together a backup clock might protect some older adults from neurodegenerative diseases. “It may spell the difference between deteriorating or not,” she said.
Eventually, it might even be possible to switch on our backup clocks as a way to treat a range of circadian-related disorders.
Dr. Akil said that finding clock-driven genes in human brains would help scientists running experiments on animals to figure out what those genes are doing.
“Instead of sitting in your lab imagining what genes might be important, here you’re taking your inspiration from the human brain and saying, ‘What is it trying to tell us?’” she said.