常用时间复杂度分析方法

四个时间复杂度分析方法

  • 同一段代码在不同输入的情况下,可能存在时间复杂度量级不一样的情况,所以有以下四种不同的时间复杂度。

  • 最好情况时间复杂度(best case time complexity);
    最坏情况时间复杂度(worst case time complexity);
    平均情况时间复杂度(average case time complexity);
    均摊时间复杂度(amortized time complexity)。

概念理解

1、最好、最坏、平均情况时间复杂度

举例:

// n表示数组array的长度
int find(int *array, int n, int x) {
  int i = 0;
  int pos = -1;
  for ( ; i < n; ++i) {
    if (array[i] == x) {
       pos = i;
       break;
    }
  }
  return pos;
}

这是一个find()函数,这段代码的作用是查找参数x在数组array中的位置,如果没有就返回-1。

  • 最好情况时间复杂度:
    在最理想的情况下,代码的时间复杂度。本例中,如果数组中的第一个元素就是要查找的变量,则时间复杂度为O(1)。

  • 最坏情况时间复杂度:
    在最糟糕的情况下,代码的时间复杂度。本例中,如果数组中没有变量x,则需要遍历数组中的每一个元素,则时间复杂度为O(n)。

  • 平均情况时间复杂度:
    最好、最坏情况时间复杂度表示的都是代码在极端情况下的时间复杂度,发生的概率并不大,所以平均情况时间复杂度用于表示平均情况下的时间复杂度。

    本例中,首先,变量x分为在数组中和不在数组中两种情况,假设两种情况的概率相同为\frac{1}{2};其次,要查找的变量出现在数组0 ~ n-1共n个位置的概率是一样的,都为\frac{1}{n};最后,根据概率论的知识,变量x出现在0 ~ n-1这n个位置的概率都为\frac{1}{2n},变量不在数组中的概率为\frac{1}{2}

    根据概率论中的加权平均值,也叫期望值的计算放法(每一种情况下的时间复杂度乘以其发生的概率)得出平均时间复杂度的值:
    1*\frac{1}{2n}+2*\frac{1}{2n}+3*\frac{1}{2n}+……+n*\frac{1}{2n}+n*\frac{1}{2} = \frac{3n+1}{4}

    用大O表示法表示,则平均时间复杂度为O(n),所以平均时间复杂度又叫加权平均时间复杂度,或者期望时间复杂度。

  • 一般情况下,我们并不会区分这三种时间复杂度,只使用其中一种即可。当同一代码块在不同情况下的时间复杂度有量级上的差距,才会区分这三种复杂度。

2、均摊时间复杂度

由上述可知,一般情况下,并不区分最好、最坏、平均情况时间复杂度,平均情况时间复杂度也只有在某些特殊的情况下才会使用,而均摊时间复杂度的应用场景比平均复杂度更特殊,更有限。

举例:

// array表示一个长度为n的数组
// 代码中的array.length就等于n
int *array = new int[n];
int count = 0;
 
void insert(int val) {
   if (count == array.length) {
      int sum = 0;
      for (int i = 0; i < array.length; ++i) {
         sum = sum + array[i];
      }
      array[0] = sum;
      count = 1;
   }

   array[count] = val;
   ++count;
}

这是一个insert()函数,实现往数组中插入一个数据的功能,如果数组满了的话,即当count == array.length时,遍历数组求和,并把数据放到数组第一个位置,然后再把新的数据插入。

1)、最好、最坏、平均情况时间复杂度

本段代码的时间复杂度分析:

  • 最好情况时间复杂度:数组未满,有空闲的位置时为O(1);
  • 最坏情况时间复杂度:数组已满,需要遍历求和时为O(n);
  • 平均情况时间复杂度:分为数组未满和已满两种情况,未满时的插入有n种情况,每种情况的时间复杂度为O(1),已满时的时间复杂度度为O(n),所以共n+1种可能,这n+1种可能的概率相同都是\frac{1}{n+1},所以平均情况时间复杂度为:
    1*\frac{1}{n+1} + 1*\frac{1}{n+1} + 1*\frac{1}{n+1} + …… +n*\frac{1}{n+1} = O(1)

2)、均摊时间复杂度

  • 本例中的insert()函数区别于之前的find()函数:find()函数在极端情况下,时间复杂度为O(1),而insert()函数在大多数情况下时间复杂度都为O(1);find()函数时间复杂度的多种情况并没有任何规律。而insert()函数O(n)之后,必有n-1个O(1),循环往复。

  • 针对这种特殊的场景,可以采用一种特殊的时间复杂度分析方法:摊还分析法,得出的是均摊时间复杂度。

  • 分析方法:
    因为时间复杂度有规律的在O(n) -> n-1个O(1)之间循环,所以把耗时最多的那次操作(O(n)),均摊到耗时最少的n-1次操作(O(1)),这样,每一组操作的时间复杂度都是O(1),即均摊时间复杂度为O(1)。

  • 应用场景:
    均摊时间复杂度就是一种特殊的平均情况时间复杂度,没有必要过度区分。当大部分情况下的时间复杂度较低,而只有极少数情况下的时间复杂度较高,且这些情况的出现有固定的时序性规律时,使用均摊时间复杂度。这时,尝试将较高复杂度操作的耗时均摊到较低复杂度的操作上,这就叫摊还分析法。

    一般能应用摊还分析法的场景,均摊时间复杂度就等于最好情况时间复杂度

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,104评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,816评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,697评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,836评论 1 298
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,851评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,441评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,992评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,899评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,457评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,529评论 3 341
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,664评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,346评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,025评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,511评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,611评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,081评论 3 377
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,675评论 2 359

推荐阅读更多精彩内容