论文---模糊滤波器的抗锯齿版最大池化保持平移不变性让CNN有了平移不变性,同时提升ImageNet成绩

论文在此:
2019 ICML Making Convolutional Networks Shift-Invariant Again
项目主页:
https://richzhang.github.io/antialiased-cnns/
开源代码:
https://github.com/adobe/antialiased-cnns#1-quickstart-load-an-antialiased-model


image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png

古往今来,大家都知道:只要图像一平移,CNN就认不出来了

原因就在降采样身上。不管是最大池化,跨步卷积,还是平均池化,都对平移太敏感:

比如,0、0、1、1、0、0、1、1……这样的周期,最大池化是这样:

image

但如果平移一格,最大池化完全变了一个样子:

image

虽然,有著名的抗锯齿(Anti-Aliasing,AA) 方法,致力解决这个问题。但把这种模块直接插进网络,会严重影响模型的表现。

现在,来自Adobe的Richard Zhang (简称“理查”) ,让抗锯齿和各种降采样和平共处了

在保留平移不变性的情况下,还能提升ImageNet上的分类准确率。VGG、ResNet、DenseNet……各种架构都适用。

不止如此, 面对其他干扰更稳定了,如旋转如缩放;面对输入图像的损坏,还更鲁棒了。

研究登上了ICML 2019,代码已经开源,还有演讲可以看。Reddit热度已经超过了250,观众纷纷表达了谢意:

论文很厉害,演讲也很好。

怎样和解的?

想知道怎样帮助CNN保留平移不变形,就要了解平移不变性是怎样打破的。

理查观察了VGG的第一个卷积层,发现它对平移毫无波澜,并不是在这里打破的。

但再观察第一个池化层,对平移有了反应:平移偶数个像素,表征还不改变,平移奇数个像素,表征就完全变了。

向网络深处走,经过的池化层越多,问题就越严重。

image

抗锯齿

想解决这个问题,就要把抗锯齿降采样友好地结合到一起。

于是,理查又仔细查看了降采样过程,把它 (按顺序) 分成了两个部分:

一是取最大值,用密集的方式。

二是在中间特征图 (Intermediate Feature Map) 上做子采样 (Sub-Sampling) 。

第一步没有问题,完全不会出现锯齿。

第二步就要改了。理查给中间特征图,加了个模糊滤波器(Blur Filter) 来抗锯齿,然后再做子采样:

image

(2)为滤波器

那么,“抗锯齿版最大池化”效果怎么样?

平移不变性与准确率兼得

理查用ImageNet分类任务测试了一下进化后的VGG,原以为会损失一些准确率,结果:

image

右为抗锯齿

image

空心为抗锯齿

在解锁平移不变性的同时,准确率还提升了。

如果降采样方法不是最大池化,又怎么样呢?

所以,理查还测试了ResNetMobileNetv2,它们用的是跨步卷积;以及DenseNet,它用的是平均池化:

image

空心为抗锯齿

这些架构也获得了类似的提升。全面成功。

上面只讲了分类这一项任务。而进化后的降采样,在图到图翻译任务上也同样有效。

不惧各种变换,以及图像损坏

不只是平移,像旋转、缩放这样的干扰,都可以应对自如;另外,面对输入图像损坏(Image Corruption) ,也变得更加鲁棒了。

ImageNet-P数据集里,有受到各类干扰的图像;而ImageNet-C数据集里,包含了系统性损坏的图像。

image

mCE=Mean Corruption Rate, mFR=Mean Flip Rate

左边一栏 (除了Baseline) 之外,是不同的滤波器,从上到下依次变强。mCEmFR,都是越小越好。

数据显示,各种滤波器都能有效增强,应对干扰的稳定性,和应对图像损坏的鲁棒性。其中,最强的过滤器Bin-5表现最佳。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,240评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,328评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,182评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,121评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,135评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,093评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,013评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,854评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,295评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,513评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,398评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,989评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,636评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,657评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容