Faiss - 部署安装与Demo

1. 概述

Faiss is a library for efficient similarity search and clustering of dense vectors.

It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM.
It also contains supporting code for evaluation and parameter tuning.

Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU.
It is developed by Facebook AI Research.

2. Setup

2.1. 通过conda安装faiss,简单方便

  • dockerfile已经ok,可以尝试下
ARG IMAGE
FROM ${IMAGE}

ARG FAISS_CPU_OR_GPU
ARG FAISS_VERSION

RUN apt-get update && \
    apt-get install -y curl bzip2  && \
    curl https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh > /tmp/conda.sh && \
    bash /tmp/conda.sh -b -p /opt/conda && \
    /opt/conda/bin/conda update -n base conda && \
    /opt/conda/bin/conda install -y python=3.6.9 && \
    /opt/conda/bin/conda install -y -c pytorch faiss-${FAISS_CPU_OR_GPU}=${FAISS_VERSION} && \
    apt-get remove -y --auto-remove curl bzip2 && \
    apt-get clean && \
    rm -fr /tmp/conda.sh

ENV PATH="/opt/conda/bin:${PATH}"

how to build a faiss-docker image

2.2. 源码安装

  • 测试没过,卡在cuda上,有机会再试试
RUN apt-get update -y && apt-get install -y libopenblas-dev python-numpy python-dev swig python-pip curl
ENV BLASLDFLAGS=/usr/lib/libopenblas.so.0 \
    PYTHON=python
RUN cd /opt \
    && git clone https://github.com/facebookresearch/faiss.git \
    && cd faiss  && git checkout v1.3.0 \
    && pip3 install matplotlib==2.2.3 python-config numpy -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com \
    && mv example_makefiles/makefile.inc.Linux ./makefile.inc \
    && ./configure --with-python=python3 \
    && make -j $(nproc) \
    && make install \
    && make -C gpu -j $(nproc) \
    && make -C gpu/test \
    && make -C python gpu \
    && make -C python build \
    && make -C python install

3. How to use

3.1. build a index

dimensions = 128
INDEX_KEY = "IDMap,Flat"
index = faiss.index_factory(dimensions, INDEX_KEY)

3.2. is GPU used

if USE_GPU:
    res = faiss.StandardGpuResources()
    index = faiss.index_cpu_to_gpu(res, 0, index)

3.3. add features to index with ids

index.add_with_ids(features, ids)

3.4. search

scores, neighbors = index.search(siftfeature, k=topN)

3.5. save index and reload

faiss.write_index(index, "large.index")
index1 = faiss.read_index("large.index")

4. More documents

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容