1、HMM,Hidden Markov model 隐马尔科夫模型
(1)天气举例
- 假设不能直接观察天气阴晴雨情况,只能看到地面的潮湿情况(假如分为非常潮湿,一般潮湿,不潮湿三种对应A,B,C三种评级)。现在我一连观察了一周的地面潮湿情况(AABBCBA),是否能够判断这一周的天气?
- 如上所述,有两类状态:一类是地面潮湿状态 observation stata(A、B、C);一类是天气情况 latent stata(阴晴雨);
- 之前已经知道了天气的状态转移概率矩阵,现在主要就需要知道天气情况与地面潮湿情况的对应关系,从而预测天气情况。
(2)Hidden Markov model
HMM理解
- HMM随机生成的状态随机序列被称为状态序列;每个状态生成一个观测,由此产生的观测随机序列,被称为观测序列。
- HMM是一个双重随机过程---具有一定状态的隐马尔可夫链(天气情况)和随机的观测序列(地面潮湿情况)。
-
The HMM is a discrete time model: for each point in time t, we have one hidden state that generates one observed event for that time point t.
HMM应用条件
-
The hidden states follow a Markov process, i.e., the states over time are not independent of one another, but the current state depends on the previous state only (and not on earlier states)
即MM马尔科夫的基本假设,当前状态只与上一状态有关
-
The distribution generating the observation depends on the state of an underlying, hidden state,。
某时刻的观测结果只与当前时刻对应的隐状态有关
发射矩阵 emission distribution matrix
- 即每种隐状态对应的,可能出现的观测结果的概率情况。
-
例如晴天天气里,地面出现A、B、C三种情况的概率分别为0.1,0.3,0.6;阴天分别为0.2,0.5,0.3;雨天分别为0.5,0.3,0.2
HMM三要素
-
综上,以及MM知识点,描述HMM,需要三大参数
- 此外还有隐状态集合,预测值集合
关于预测值,一般以分类类型结果为主;
关于隐状态,我认为在实际探索的过程中往往并不清楚状态的含义,而是根据预测值及专业知识分析状态意义。例如我把天气视为观测结果,那么隐状态可以是梅雨期?台风期?甚至可以说是太阳公公心情的好坏状态。
HMM模型可以解决的三类问题!!!划重点
(1)概率计算问题
- 给定模型λ=(A,B,π)和观测序列Q={q1,q2,...,qT},计算模型λ下观测到序列Q出现的概率P(Q|λ);
- 例如给定天气与地面潮湿情况的HMM三要素,及一组地面潮湿情况数据。计算这组数据的出现概率是多大
- 方法:前向-后向算法
(2)学习问题
- 已知观测序列Q={q1,q2,...,qT},估计模型λ=(A,B,π)的参数,使得在该模型下观测序列P(Q|λ)最大;
- 例如已知一组地面潮湿情况数据,估计天气与地面潮湿情况的HMM三要素,从而使出现这组数据的可能性最大;
- 方法:Maximum likelihood, Expectation Maximization or Baum-Welch algorithm, and Bayesian estimation
(3)预测问题
- 给定模型λ=(A,B,π)和观测序列Q={q1,q2,...,qT},求给定观测序列条件概率P(I|Q,λ)最大的状态序列I。
- 例如已知一周的地面潮湿情况数据,并且已知天气与地面潮湿情况的HMM三要素,从而估计这一周最有可能的天气情况
- 方法:Viterbi algorithm
个人认为在实验探索中,观察预测值比较容易获得,由此学习建模,估计参数。然后根据模型结果,进行其它观察结果的隐状态序列的预测。
2、R代码实操
已知某特殊DNA序列存在两个区(hidden stata),分别是AT-rich与CG-rich。
-
前者富含AT碱基,后者CG碱基,具体碱基概率分布(emission matrix)如下图。
此外也知道了初始状态分布概率以及状态概率转移矩阵,据此随机生成一段符合要求的碱基序列。
第一步:准备TM、EM
states <- c("AT-rich", "GC-rich") # Define the names of the states
ATrichprobs <- c(0.7, 0.3) # Set the probabilities of switching states, where the previous state was "AT-rich"
GCrichprobs <- c(0.1, 0.9) # Set the probabilities of switching states, where the previous state was "GC-rich"
thetransitionmatrix <- matrix(c(ATrichprobs, GCrichprobs), 2, 2, byrow = TRUE) # Create a 2 x 2 matrix
rownames(thetransitionmatrix) <- states
colnames(thetransitionmatrix) <- states
thetransitionmatrix
nucleotides <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
ATrichstateprobs <- c(0.39, 0.1, 0.1, 0.41) # Set the values of the probabilities, for the AT-rich state
GCrichstateprobs <- c(0.1, 0.41, 0.39, 0.1) # Set the values of the probabilities, for the GC-rich state
theemissionmatrix <- matrix(c(ATrichstateprobs, GCrichstateprobs), 2, 4, byrow = TRUE) # Create a 2 x 4 matrix
rownames(theemissionmatrix) <- states
colnames(theemissionmatrix) <- nucleotides
theemissionmatrix
- 第二步:编写函数
# Function to generate a DNA sequence, given a HMM and the length of the sequence to be generated.
generatehmmseq <- function(transitionmatrix, emissionmatrix, initialprobs, seqlength)
{
nucleotides <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
states <- c("AT-rich", "GC-rich") # Define the names of the states
mysequence <- character() # Create a vector for storing the new sequence
mystates <- character() # Create a vector for storing the state that each position in the new sequence
# was generated by
# Choose the state for the first position in the sequence:
firststate <- sample(states, 1, rep=TRUE, prob=initialprobs)
# Get the probabilities of the current nucleotide, given that we are in the state "firststate":
probabilities <- emissionmatrix[firststate,]
# Choose the nucleotide for the first position in the sequence:
firstnucleotide <- sample(nucleotides, 1, rep=TRUE, prob=probabilities)
mysequence[1] <- firstnucleotide # Store the nucleotide for the first position of the sequence
mystates[1] <- firststate # Store the state that the first position in the sequence was generated by
for (i in 2:seqlength)
{
prevstate <- mystates[i-1] # Get the state that the previous nucleotide in the sequence was generated by
# Get the probabilities of the current state, given that the previous nucleotide was generated by state "prevstate"
stateprobs <- transitionmatrix[prevstate,]
# Choose the state for the ith position in the sequence:
state <- sample(states, 1, rep=TRUE, prob=stateprobs)
# Get the probabilities of the current nucleotide, given that we are in the state "state":
probabilities <- emissionmatrix[state,]
# Choose the nucleotide for the ith position in the sequence:
nucleotide <- sample(nucleotides, 1, rep=TRUE, prob=probabilities)
mysequence[i] <- nucleotide # Store the nucleotide for the current position of the sequence
mystates[i] <- state # Store the state that the current position in the sequence was generated by
}
for (i in 1:length(mysequence))
{
nucleotide <- mysequence[i]
state <- mystates[i]
print(paste("Position", i, ", State", state, ", Nucleotide = ", nucleotide))
}
}
- 第三步:给定初始状态概率进行预测
theinitialprobs <- c(0.5, 0.5)
generatehmmseq(thetransitionmatrix, theemissionmatrix, theinitialprobs, 30)
R实操代码本身意义可能不大,但对于我们具体了解HMM模型很有帮助。在具体应用HMM模型时,更多的是采用相应的R包进行分析。这类R包有不少,会挑选几个进行示例学习。
参考文章
1、Hidden Markov Models — Bioinformatics 0.1 documentation
2、01 隐马尔可夫模型 - 马尔可夫链、HMM参数和性质 - 简书
3、Multilevel HMM tutorial
4、马尔可夫链_百度百科