scikit-learn_cookbook1: 高性能机器学习工具-NumPy

源码下载

在本章主要内容:

  • NumPy基础知识
  • 加载iris数据集
  • 查看iris数据集
  • 用pandas查看iris数据集
  • 用NumPy和matplotlib绘图
  • 最小机器学习配方 - SVM分类
  • 介绍交叉验证
  • 以上汇总
  • 机器学习概述 - 分类与回归

简介

本章我们将学习如何使用scikit-learn进行预测。 机器学习强调衡量预测能力,并用scikit-learn进行准确和快速的预测。我们将检查iris数据集,该数据集由三种iris的测量结果组成:Iris Setosa,Iris Versicolor和Iris Virginica。

为了衡量预测,我们将:

  • 保存一些数据以进行测试
  • 仅使用训练数据构建模型
  • 测量测试集的预测能力

解决问题的方法

  • 类别(Classification):
    • 非文本,比如Iris
  • 回归
  • 聚类
  • 降维

NumPy基础

数据科学经常处理结构化的数据表。scikit-learn库需要二维NumPy数组。 在本节中,您将学习

  • NumPy的shape和dimension
#!python

    In [1]: import numpy as np

    In [2]: np.arange(10)
    Out[2]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

    In [3]: array_1 = np.arange(10)

    In [4]: array_1.shape
    Out[4]: (10,)

    In [5]: array_1.ndim 
    Out[5]: 1

    In [6]: array_1.reshape((5,2))
    Out[6]: 
    array([[0, 1],
           [2, 3],
           [4, 5],
           [6, 7],
           [8, 9]])

    In [7]: array_1 = array_1.reshape((5,2))

    In [8]: array_1.ndim
    Out[8]: 2
  • NumPy广播(broadcasting)
#!python

    In [9]: array_1 + 1
    Out[9]: 
    array([[ 1,  2],
           [ 3,  4],
           [ 5,  6],
           [ 7,  8],
           [ 9, 10]])

    In [10]: array_2 = np.arange(10)

    In [11]: array_2 * array_2
    Out[11]: array([ 0,  1,  4,  9, 16, 25, 36, 49, 64, 81])

    In [12]: array_2 = array_2 ** 2 #Note that this is equivalent to array_2 *

    In [13]: array_2
    Out[13]: array([ 0,  1,  4,  9, 16, 25, 36, 49, 64, 81])

    In [14]: array_2 = array_2.reshape((5,2))

    In [15]: array_2
    Out[15]: 
    array([[ 0,  1],
           [ 4,  9],
           [16, 25],
           [36, 49],
           [64, 81]])

    In [16]: array_1 = array_1 + 1

    In [17]: array_1
    Out[17]: 
    array([[ 1,  2],
           [ 3,  4],
           [ 5,  6],
           [ 7,  8],
           [ 9, 10]])

    In [18]: array_1 + array_2
    Out[18]: 
    array([[ 1,  3],
           [ 7, 13],
           [21, 31],
           [43, 57],
           [73, 91]])
           
scikit-learn-cookbook-numpy-compare-rule.png
  • 初始化NumPy数组和dtypes
#!python

    In [19]: np.zeros((5,2))
    Out[19]: 
    array([[0., 0.],
           [0., 0.],
           [0., 0.],
           [0., 0.],
           [0., 0.]])

    In [20]: np.ones((5,2), dtype = np.int)
    Out[20]: 
    array([[1, 1],
           [1, 1],
           [1, 1],
           [1, 1],
           [1, 1]])

    In [21]: np.empty((5,2), dtype = np.float)
    Out[21]: 
    array([[0.00000000e+000, 0.00000000e+000],
    
    
           [6.90082649e-310, 6.90082647e-310],
           [6.90072710e-310, 6.90072711e-310],
           [6.90083466e-310, 0.00000000e+000],
           [6.90083921e-310, 1.90979621e-310]]) 
           
  • 索引
#!python

    In [22]: array_1[0,0] #Finds value in first row and first column.
    Out[22]: 1

    In [23]: array_1[0,:] # View the first row
    Out[23]: array([1, 2])

    In [24]: array_1[:,0] # view the first column
    Out[24]: array([1, 3, 5, 7, 9])

    In [25]: array_1[2:5, :]
    Out[25]: 
    array([[ 5,  6],
           [ 7,  8],
           [ 9, 10]])

    In [26]: array_1
    Out[26]: 
    array([[ 1,  2],
           [ 3,  4],
           [ 5,  6],
           [ 7,  8],
           [ 9, 10]])

    In [27]: array_1[2:5,0]
    Out[27]: array([5, 7, 9])
    
  • 布尔数组
#!python

    In [28]: array_1 > 5
    Out[28]: 
    array([[False, False],
           [False, False],
           [False,  True],
           [ True,  True],
           [ True,  True]])

    In [29]: array_1[array_1 > 5]
    Out[29]: array([ 6,  7,  8,  9, 10])
    
  • 算术运算
#!python

    In [30]: array_1.sum()
    Out[30]: 55

    In [31]: array_1.sum(axis = 1) # Find all the sums by row: 
    Out[31]: array([ 3,  7, 11, 15, 19])

    In [32]: array_1.sum(axis = 0) # Find all the sums by column
    Out[32]: array([25, 30])

    In [33]: array_1.mean(axis = 0)
    Out[33]: array([5., 6.])
    
  • NaN值
#!python

    # Scikit-learn不接受np.nan
    In [34]: array_3 = np.array([np.nan, 0, 1, 2, np.nan])

    In [35]: np.isnan(array_3)
    Out[35]: array([ True, False, False, False,  True])

    In [36]: array_3[~np.isnan(array_3)]
    Out[36]: array([0., 1., 2.])

    In [37]: array_3[np.isnan(array_3)] = 0

    In [38]: array_3
    Out[38]: array([0., 0., 1., 2., 0.])

Scikit-learn只接受实数的二维NumPy数组,没有缺失的np.nan值。从经验来看,最好将np.nan改为某个值丢弃。 就我个人而言,我喜欢跟踪布尔模板并保持数据的形状大致相同,因为这会导致更少的编码错误和更多的编码灵活性。

加载数据

#!python

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: import matplotlib.pyplot as plt

In [4]: from sklearn import datasets

In [5]: iris = datasets.load_iris()

In [6]: iris.data
Out[6]: 
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2],
       [7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3],
       [6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]])

In [7]: iris.data.shape
Out[7]: (150, 4)

In [8]: iris.data[0]
Out[8]: array([5.1, 3.5, 1.4, 0.2])

In [9]: iris.feature_names
Out[9]: 
['sepal length (cm)',
 'sepal width (cm)',
 'petal length (cm)',
 'petal width (cm)']

In [10]: iris.target
Out[10]: 
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

In [11]: iris.target.shape
Out[11]: (150,)

In [12]: iris.target_names
Out[12]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

  • 用pandas查看数据
#!python

import numpy as np    #Load the numpy library for fast array computations
import pandas as pd   #Load the pandas data-analysis library
import matplotlib.pyplot as plt   #Load the pyplot visualization library

%matplotlib inline

from sklearn import datasets
iris = datasets.load_iris()

iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)

iris_df['sepal length (cm)'].hist(bins=30)
    
scikit-learn-cookbook1-pandas1.png
#!python

for class_number in np.unique(iris.target):
    plt.figure(1)
    iris_df['sepal length (cm)'].iloc[np.where(iris.target == class_number)[0]].hist(bins=30)
    
#!python

np.where(iris.target == class_number)[0]
   

执行结果

#!python

array([100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
       113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
       126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,
       139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149], dtype=int64)
    

matplotlib和NumPy作图

#!python

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

plt.plot(np.arange(10), np.arange(10))

plt.plot(np.arange(10), np.exp(np.arange(10)))


# 两张图片放在一起
plt.figure()
plt.subplot(121)
plt.plot(np.arange(10), np.exp(np.arange(10)))
plt.subplot(122)
plt.scatter(np.arange(10), np.exp(np.arange(10)))



plt.figure()
plt.subplot(211)
plt.plot(np.arange(10), np.exp(np.arange(10)))
plt.subplot(212)
plt.scatter(np.arange(10), np.exp(np.arange(10)))

plt.figure()
plt.subplot(221)
plt.plot(np.arange(10), np.exp(np.arange(10)))
plt.subplot(222)
plt.scatter(np.arange(10), np.exp(np.arange(10)))
plt.subplot(223)
plt.scatter(np.arange(10), np.exp(np.arange(10)))
plt.subplot(224)
plt.scatter(np.arange(10), np.exp(np.arange(10)))

from sklearn.datasets import load_iris

iris = load_iris()
data = iris.data
target = iris.target

# Resize the figure for better viewing
plt.figure(figsize=(12,5))

# First subplot
plt.subplot(121)

# Visualize the first two columns of data:
plt.scatter(data[:,0], data[:,1], c=target)

# Second subplot
plt.subplot(122)

# Visualize the last two columns of data:
plt.scatter(data[:,2], data[:,3], c=target)
    

执行结果参见

最小机器学习快速入门 - 向量机分类

为了做出预测,我们将:

  • 说明要解决的问题
  • 选择一个模型来解决问题
  • 训练模型
  • 作出预测
  • 衡量模型的表现如何
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容