1352534-20190307212535731-132765532.jpg
动态时间调整算法是大多用于检测两条语音的相似程度,由于每次发言,每个字母发音的长短不同,会导致两条语音不会完全的吻合,动态时间调整算法,会对语音进行拉伸或者压缩,使得它们竟可能的对齐。
import numpy as np
#.reshape(-1,1)变为一列
x = np.array([2, 0, 1, 1, 2, 4, 2, 1, 2, 0]).reshape(-1, 1)
y = np.array([1, 1, 2, 4, 2, 1, 2, 0]).reshape(-1, 1)
from dtw import dtw
euclidean_norm = lambda x, y: np.abs(x - y)
d, cost_matrix, acc_cost_matrix, path = dtw(x, y, dist=euclidean_norm)
import matplotlib.pyplot as plt
plt.imshow(acc_cost_matrix.T, origin='lower', cmap='gray', interpolation='nearest')
plt.plot(path[0], path[1], 'w')
plt.show()