hive如何调整map数和reduce数

一般情况下,启动一个hive任务时hive会计算这个任务需要用到的map和reduce数量,通常map数和reduce数不需要调整。但是有时如果map或reduce的计算很复杂、单个map的执行时间很长,且hive分配的map数或reduce比较少,集群还有大量计算资源没有利用的情况下,可以通过增大map数或reduce数,来提高任务并发,缩短任务计算时长,提高计算效率。

1、hive on mr

1.1、如何调整map数

InputFormat 接口按照某个策略将输入数据且分成若干个 split,以便确定 Map Task 的个数即 Mapper 的个数,在 MapReduce 框架中,一个 split 就意味着需要一个 Map Task;

hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat时,hive会先计算splitSize ,然后通过splitSize、任务输入的数据量大小和文件数来共同决定split数量,即map数。
splitSize = max{minSize,min{goalSize,blockSize}}
其中

  • minSize:是mapreduce.input.fileinputformat.split.minsize决定的 InputFormat的最小长度。
  • goalSize:该值由 totalSize/numSplits来确定 InputSplit 的长度,它是根据用户的期望的 InputSplit 个数计算出来的。numSplits 为用户设定的 Map Task 的个数,默认为1,可通过mapreduce.job.maps设置。totalSize是hive任务处理的数据量大小。
  • blockSize:HDFS 中的文件存储块block的大小,可以通过dfs.blocksize查看大小。

由上公式可知,在org.apache.hadoop.hive.ql.io.HiveInputFormat接口下,主要是mapreduce.input.fileinputformat.split.minsizemapreduce.job.maps来决定map数

hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat时,主要是如下四个参数起作用:

  • mapreduce.input.fileinputformat.split.minsize
  • mapreduce.input.fileinputformat.split.maxsize
  • mapreduce.input.fileinputformat.split.minsize.per.rack
  • mapreduce.input.fileinputformat.split.minsize.per.node
    这里切分的逻辑比较复杂,主要的流程大致如下:
  1. 首先处理每个Datanode的blockInfo,先按照>=maxsplitsize来切分split,剩余的再按照blockinfo>=minSplitSizeNode切分,其余的等和rack的其余blockinfo进行合并。
  2. 其次对每个Rack进行处理:先按照>=maxsplitsize来切分split,剩余的再按照blockinfo>=minSplitSizeRack切分,其余的等和overflow的其余blockinfo进行合并。
  3. 对于overflow blockInfo直接根据maxsplitsize来进行切分。

1.2 如何调整reduce数

hive on mr模式下reduce数主要受如下两个参数影响:

  • hive.exec.reducers.bytes.per.reducer --每个reduce处理的数量量
  • hive.exec.reducers.max --hive任务最大reduce个数

reducer数 = min(hive.exec.reducers.max,max(1,totalsize/hive.exec.reducers.bytes.per.reducer))

2、hive on tez

2.1、如何调整map数

在运行hive on tez时会发现跟hive on mr的map数差异会比较大,主要原因在于 Tez 中对 inputSplit 做了 grouping 操作,将多个 inputSplit 组合成更少的 groups,然后为每个 group 生成一个 mapper 任务,而不是为每个inputSplit 生成一个mapper 任务。
可以通过调整如下参数来调整grouping数:

  • tez.grouping.min-size
  • tez.grouping.max-size

2.2、如何调整reduce数

tez on tez模式下reduce数主要受如下两个参数影响:

  • hive.exec.reducers.bytes.per.reducer --每个reduce处理的数量量
  • hive.exec.reducers.max --hive任务最大reduce个数
  • hive.tez.auto.reducer.parallelism
  • hive.tex.min.partition.factor
    -hive.tez.max.partition.factor

reducer数 = Max(1, Min(hive.exec.reducers.max, ReducerStage estimate/hive.exec.reducers.bytes.per.reducer))x hive.tez.max.partition.factor

3、其他影响map数和reduce数的情况

3.1 小文件合并

hive.merge.mapfiles = true #在Map-only的任务结束时合并小文件
hive.merge.mapredfiles = true #在Map-Reduce的任务结束时合并小文件
hive.merge.size.per.task = 256*1000*1000 #合并文件的大小
hive.merge.smallfiles.avgsize=16000000 #当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge
上面参数会在任务结束后,如果任务生成的小文件触发了hive.merge.smallfiles.avgsize=会另外再启reduce任务来合并小文件。

3.2 分桶表的影响

如果往分桶表里插入数据,由于hdfs最终会每个桶一个文件,因此在当分桶表设置了多少个桶,最终就会生成多少个reduce任务

3.3 只一个个redecu的情况

  • 执行全局聚合,例如语句:select count(*),sum(field1) from tablea
  • 做笛卡尔集操作
  • 执行order by 操作

3.4 map阶段不支持拆分的情况

有的文件格式并不支持切分,如果hive表的存储的文件格式不支持切分,则在查询该表时,有多少文件就会产生多少map任务。例如,存储格式是text,但是采用了gzip压缩,这种情况下则不支持切分,读表数据时,该表对应的存储目录下有多少个文件就会生成多少个map任务,每个map任务处理一个文件的数据

4、map数和reduce数设置多少最合适?

map数和reduce数并非越多越好,需要综合多种情况来考虑

  • 任务的计算复杂度:处理同样数据量,计算逻辑越复杂,任务耗时会越长
  • hdfs文件系统的元数据的压力:如果生成的小文件很多,hdfs元数据会增长很快,会增加hdfs的元数据压力
  • 整合集群的计算资源

一般情况下不需要调整map数和reduce数,当单个map执行时间过长时,且map数不多的情况下,就需要通过调整map数,通过提高map数,提高并发来缩短单个map的执行时间,从而缩短整合任务的计算时间。同样reduce阶段单个reduce处理数据量很大,耗时比较长时,而分配的reduce数不多的情况下,也可以通过提高reduce数来减少每个reudce的计算时长。
那单个map执行多少时间为宜:根据在大数据集群上的实践经验,单个map宜在1-2分钟执行完是比较好,如果单个map执行时间太短,会消耗比较多的时间在申请集群资源和初始化资源阶段,反倒影响整体任务效率;如果单个map执行时间太长,长时间占用集群资源,不能及时释放资源,导致其他任务长时间等待,不利于集群计算资源的合理利用。
同样,reduce任务阶段,一般执行会比较长,因此reduce阶段不reduce数不宜太多,一般不超过集群cores数的50%,太多会占用大量集群资源,导致其他任务获取不到资源而排队,同时也会生成过多的文件。

参考文档

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容