上下文输入无限制,谷歌发布Infini-Transformer

去年,百川智能发布号称全球最长的上下文窗口大模型Baichuan2-192K,一次性可输入35万字,超越GPT-4。

今年3月,Kimi智能助手宣布在上下文窗口技术上突破200万字

紧追其后,国内各大互联网巨头纷纷布局升级自家大模型产品,360智脑正式内测500万长文本处理能力功能,阿里宣布通义千问开放1000万字长文本能力,百度也即将开放200-400万的长文本能力。

而近日,谷歌推出Infini-Transformer框架,彻底结束LLM上下文长度之争,支持无限长的输入

4月10日,谷歌发布论文《Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention》,提出一种名为"Infini-attention(无限注意力)"的新型注意力机制,可以将基于 Transformer 的LLM 扩展到无限长输入,而不增加内存和计算需求。

论文链接:https://arxiv.org/pdf/2404.07143.pdf

使用该技术,研究者成功将一个 1B 的模型上下文长度提高到 100 万;应用到 8B 模型上,模型能处理 500K 的书籍摘要任务。

不同于传统的 Transformer 使用局部注意力丢弃旧片段,为新片段释放内存空间。Infini-attention将压缩记忆整合进标准的点积注意力机制,并在单个Transformer块内同时实现了掩码局部注意力和长期线性注意力机制。

该方法使现有LLM能够通过持续预训练和fine-tuning自然地扩展到处理无限长上下文,并以流的方式处理极长的输入进行计算。Infini-attention复用了标准注意力计算的所有键(Key)、值(Value)和查询(Query)状态,将旧的KV状态存储在压缩记忆中,而不是像标准注意力机制那样丢弃它们。在处理后续序列时,Infini-attention通过使用注意力查询状态来从记忆中提取值。为计算最终的上下文输出,Infini-attention会聚合长期记忆提取的值和局部注意力上下文。

Infini-attention的核心思想是将压缩记忆整合进标准点积注意力机制中,如图所示。


Infini-Transformer与Transformer-XL的操作方式类似,都是在一个个序列段上进行计算。在每个段内计算标准因果点积注意力上下文。不同的是,Transformer-XL在处理下一个段时会丢弃前一个段的注意力状态,而Infini-Transformer复用旧的 KV 注意力状态,以通过压缩存储来维护整个上下文历史。因此,Infini-Transformer 的每个注意力层都具有全局压缩状态和局部细粒度状态。

Infini-attention的具体实现如图所示:


它与标准的多头注意力(MHA)类似,每个注意力层都维护H个parallel的压缩记忆。Infini-attention首先计算标准的点积注意力上下文A_dot,然后从压缩记忆中检索出长期记忆上下文A_mem。最后,它通过一个学习的门控scalar β来结合这两部分上下文,得到最终的注意力输出O

Infini-attention的记忆更新和检索机制借鉴了先前工作,采用了简单高效的线性注意力形式。具体地,记忆检索通过将查询Q与之前存储的键值对M进行线性注意力计算得到;而记忆更新则是将新的键值对以联想绑定的方式累加到M中。研究人员还引入了delta规则来进一步优化记忆更新,尝试有选择地只更新那些不存在于记忆中的新信息。

与标准(多头注意力)MHA相比,Infini-attention仅引入了极少量的额外参数(每头一个标量值),就能够学习长短期上下文信息的最佳平衡。这种设计不仅计算高效,而且便于将Infini-attention无缝集成到现有的Transformer LLM中,支持即插即用的长上下文适应。


在具体实验中,首先在长上下文语言建模基准测试(PG19和Arxiv-math)上评估了小型Infini-Transformer模型。表2结果显示,Infini-Transformer不仅优于Transformer-XL和Memorizing Transformers等基线模型,而且存储参数减少了114倍。研究人员还发现,当训练序列长度增加到100K时,模型的困惑度进一步降低。


研究人员还在1M长度密钥检索任务和5K长度微调任务上验证了Infini-Transformer的性能。实验中输入 token 的范围从 32K 到 1M,对于每个测试子集,研究者控制密钥的位置,使其位于输入序列的开头、中间或结尾附近。图3实验报告了零样本准确率和微调准确率。在对 5K 长度输入进行 400 个步骤的微调后,Infini-Transformer 解决了高达 1M 上下文长度的任务。

表 4 将 Infini-Transformer 与专门为摘要任务构建的编码器 - 解码器模型进行了比较。结果表明 Infini-Transformer 超越了之前最佳结果,并且通过处理书中的整个文本在 BookSum 上实现了新的 SOTA。


随着算法不断突破,新技术不断涌现,势必将造就智能算力的爆发式增长。英智公司智能调度全球高端算力,助力企业抓住人工智能发展趋势,满足政企在模型训练、应用部署中的需要。英智公司希望每个政企都能抓住AI浪潮的风口,实现数字化转型和高质量发展。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容