L1稀疏,L2平滑的推理

介绍L1和L2

  L1和L2正则常被用来解决过拟合问题。而L1正则也常被用来进行特征选择,主要原因在于L1正则化会使得较多的参数为0,从而产生稀疏解。我们可以将0对应的特征遗弃,进而用来选择特征。

角度一(从L1和L2的来源看)

当你想从一个手头的数据集中学习出一套规则时,贝叶斯学派认为仅仅使用这些数据是不够的,还需要加入先验知识。如果你在损失函数中使用了L1正则项,那么其实质就是加入了拉普拉斯先验分布,即认为数据是符合拉普拉斯分布的;如果你使用了L2正则项,那么就是加入了高斯先验分布,即认为数据是符合高斯分布的。一般由于推导和计算方便,会对分布函数取对数,然后再去优化。最终的结果是,由于你的模型参数考虑了数据先验,学习出来的规则就更加接近实际。

我们对高斯分布很熟悉,但是对拉普拉斯分布可能比较陌生,拉普拉斯密度函数的图形和表达式分别如下所示:


我们如果对拉普拉斯密度函数取对数,剩下的是一个一次项|x-u|,这就是L1范式;我们如果对高斯密度函数取对数剩下的就是一个二次项(x-u)^2,这就是L2范式。比较高斯分布的密度函数图像和拉普拉斯分布的密度函数图像,我们很容易看到,当x趋于正无穷和负无穷时,前者是逼近于0的,后者是等于0的。


角度二(从代价函数上看)

但为什么L1正则会产生稀疏解呢?这里利用公式进行解释。

假设只有一个参数为w,损失函数为L(w),分别加上L1正则项和L2正则项后有:


假设L(w)在0处的倒数为d0,即


则可以推导使用L1正则和L2正则时的导数。

引入L2正则项,在0处的导数


引入L1正则项,在0处的导数


可见,引入L2正则时,代价函数在0处的导数仍是d0,无变化。而引入L1正则后,代价函数在0处的导数有一个突变。从d0+λ到d0−λ,若d0+λ和d0−λ异号,则在0处会是一个极小值点。因此,优化时,很可能优化到该极小值点上,即w=0处。

这里只解释了有一个参数的情况,如果有更多的参数,也是类似的。因此,用L1正则更容易产生稀疏解。


角度三(L1正则化本身的导数性质)

这个角度从权值的更新公式来看权值的收敛结果。

首先来看看L1和L2的梯度(导数的反方向):


所以(不失一般性,我们假定:wi等于不为0的某个正的浮点数,学习速率η 为0.5):

L1的权值更新公式为wi = wi - η * 1 = wi - 0.5 * 1,也就是说权值每次更新都固定减少一个特定的值(比如0.5),那么经过若干次迭代之后,权值就有可能减少到0。

L2的权值更新公式为wi = wi - η * wi = wi - 0.5 * wi,也就是说权值每次都等于上一次的1/2,那么,虽然权值不断变小,但是因为每次都等于上一次的一半,所以很快会收敛到较小的值但不为0。

下面的图很直观的说明了这个变化趋势:


L1能产生等于0的权值,即能够剔除某些特征在模型中的作用(特征选择),即产生稀疏的效果。

L2可以得迅速得到比较小的权值,但是难以收敛到0,所以产生的不是稀疏而是平滑的效果。


角度四(几何空间)

这个角度从几何位置关系来看权值的取值情况。

直接来看下面这张图


高维我们无法想象,简化到2维的情形,如上图所示。其中,左边是L1图示,右边是L2图示,左边的方形线上是L1中w1/w2取值区间,右边得圆形线上是L2中w1/w2的取值区间,绿色的圆圈表示w1/w2取不同值时整个正则化项的值的等高线(凸函数),从等高线和w1/w2取值区间的交点可以看到,L1中两个权值倾向于一个较大另一个为0,L2中两个权值倾向于均为非零的较小数。这也就是L1稀疏,L2平滑的效果。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容