Faker 测试开发造数据

1. 背景

在软件需求、开发、测试过程中,有时候需要使用一些测试数据,针对这种情况,我们一般要么使用已有的系统数据,要么需要手动制造一些数据。由于现在的业务系统数据多种多样,千变万化。在手动制造数据的过程中,可能需要花费大量精力和工作量,此项工作既繁复又容易出错,比如要构造一批用户三要素(姓名、手机号、身份证)、构造一批银行卡数据、或构造一批地址通讯录等。

这时候,人们常常为了偷懒快捷,测试数据大多数可能是类似这样子的:

测试, 1300000 000123456张三, 1310000 000123456李四, 1320000 000234567王五, 1330000 000345678

测试数据中包括了大量的“测试XX”,要么就是随手在键盘上一顿乱敲,都是些无意义的假数据。

你是不是这样做的呢?坦白的说,有过一段时间,笔者偶尔也是这么干的。

但是,细想一下,这样的测试数据,不仅要自己手动敲,还假的不能再假,浪费时间、浪费人力、数据价值低。

而且,部分数据的手工制造还无法保障:比如UUID类数据、MD5、SHA加密类数据等。

为了帮助大家解决这个问题,更多还是提供种一种解决方案或思路,今天给大家分享一款Python造数据利器:Faker库,利用它可以生成一批各种各样的看起来“像真的一样”的假数据。

2. Faker介绍 、安装

2.1 Faker是什么

Faker是一个Python包,主要用来创建伪数据,使用Faker包,无需再手动生成或者手写随机数来生成数据,只需要调用Faker提供的方法,即可完成数据的生成。

项目地址:

https://github.com/joke2k/faker
图片

2.2 安装

安装 Faker 很简单,使用 pip 方式安装:

pip install Faker

除了pip 安装,也可以通过上方提供的github地址,来下载编译安装。

(py3_env) ➜  py3_env pip show fakerName: FakerVersion: 4.1.1Summary: Faker is a Python package that generates fake data for you.Home-page: https://github.com/joke2k/fakerAuthor: joke2kAuthor-email: joke2k@gmail.comLicense: MIT LicenseLocation: /Users/xxx/work_env/py3_env/lib/python3.7/site-packagesRequires: python-dateutil, text-unidecodeRequired-by:

3. Faker常用使用

3.1 基本用法

Faker 的使用也是很简单的,从 faker 模块中导入类,然后实例化这个类,就可以调用方法使用了:

from faker import Fakerfake = Faker()name = fake.name()address = fake.address()print(name)print(address)# 输出信息Ashley Love074 Lee Village Suite 464Dawnborough, RI 44234

这里我们造了一个名字和一个地址,由于 Faker 默认是英文数据,所以如果我们需要造其他语言的数据,可以使用 locale参数,例如:

from faker import Fakerfake = Faker(locale='zh_CN')name = fake.name()address = fake.address()print(name)print(address)# 输出信息张艳海南省上海市朝阳邱路y座 175208

是不是看起来还不错,但是有一点需要注意,这里的地址并不是真实的地址,而是随机组合出来的,也就是将省、市、道路之类的随机组合在一起。

这里介绍几个比较常见的语言代号

  • 简体中文:zh_CN
  • 繁体中文:zh_TW
  • 美国英文:en_US
  • 英国英文:en_GB
  • 德文:de_DE
  • 日文:ja_JP
  • 韩文:ko_KR
  • 法文:fr_FR

例如将语言修改为繁体中文fake = Faker(locale='zh_TW'),输出信息为:

楊志宏100 中壢博愛街10號9樓

3.2 常用函数

除了上述介绍的fake.namefake.address生成姓名和地址两个函数外,常用的faker函数按类别划分有如下一些常用方法。

1、地理信息类

  • fake.city_suffix():市,县
  • fake.country():国家
  • fake.country_code():国家编码
  • fake.district():区
  • fake.geo_coordinate():地理坐标
  • fake.latitude():地理坐标(纬度)
  • fake.longitude():地理坐标(经度)
  • fake.postcode():邮编
  • fake.province():省份
  • fake.address():详细地址
  • fake.street_address():街道地址
  • fake.street_name():街道名
  • fake.street_suffix():街、路

2、基础信息类

  • ssn():生成身份证号
  • bs():随机公司服务名
  • company():随机公司名(长)
  • company_prefix():随机公司名(短)
  • company_suffix():公司性质
  • credit_card_expire():随机信用卡到期日
  • credit_card_full():生成完整信用卡信息
  • credit_card_number():信用卡号
  • credit_card_provider():信用卡类型
  • credit_card_security_code():信用卡安全码
  • job():随机职位
  • first_name_female():女性名
  • first_name_male():男性名
  • last_name_female():女姓
  • last_name_male():男姓
  • name():随机生成全名
  • name_female():男性全名
  • name_male():女性全名
  • phone_number():随机生成手机号
  • phonenumber_prefix():随机生成手机号段

3、计算机基础、Internet信息类

  • ascii_company_email():随机ASCII公司邮箱名
  • ascii_email():随机ASCII邮箱:
  • company_email():
  • email():
  • safe_email():安全邮箱

4、网络基础信息类

  • domain_name():生成域名
  • domain_word():域词(即,不包含后缀)
  • ipv4():随机IP4地址
  • ipv6():随机IP6地址
  • mac_address():随机MAC地址
  • tld():网址域名后缀(.com,.net.cn,等等,不包括.)
  • uri():随机URI地址
  • uri_extension():网址文件后缀
  • uri_page():网址文件(不包含后缀)
  • uri_path():网址文件路径(不包含文件名)
  • url():随机URL地址
  • user_name():随机用户名
  • image_url():随机URL地址

5、浏览器信息类

  • chrome():随机生成Chrome的浏览器user_agent信息
  • firefox():随机生成FireFox的浏览器user_agent信息
  • internet_explorer():随机生成IE的浏览器user_agent信息
  • opera():随机生成Opera的浏览器user_agent信息
  • safari():随机生成Safari的浏览器user_agent信息
  • linux_platform_token():随机Linux信息
  • user_agent():随机user_agent信息

6、数字类

  • numerify():三位随机数字

  • random_digit():0~9随机数

  • random_digit_not_null():1~9的随机数

  • random_int():随机数字,默认0~9999,可以通过设置min,max来设置

  • random_number():随机数字,参数digits设置生成的数字位数

  • pyfloat():

    left_digits=5 #生成的整数位数, right_digits=2 #生成的小数位数, positive=True #是否只有正数

  • pyint():随机Int数字(参考random_int()参数)

  • pydecimal():随机Decimal数字(参考pyfloat参数)

7、文本、加密类

  • pystr():随机字符串

  • random_element():随机字母

  • random_letter():随机字母

  • paragraph():随机生成一个段落

  • paragraphs():随机生成多个段落

  • sentence():随机生成一句话

  • sentences():随机生成多句话,与段落类似

  • text():随机生成一篇文章

  • word():随机生成词语

  • words():随机生成多个词语,用法与段落,句子,类似

  • binary():随机生成二进制编码

  • boolean():True/False

  • language_code():随机生成两位语言编码

  • locale():随机生成语言/国际 信息

  • md5():随机生成MD5

  • null_boolean():NULL/True/False

  • password():随机生成密码,可选参数:length:密码长度;special_chars:是否能使用特殊字符;digits:是否包含数字;upper_case:是否包含大写字母;lower_case:是否包含小写字母

  • sha1():随机SHA1

  • sha256():随机SHA256

  • uuid4():随机UUID

8、时间信息类

  • date():随机日期

  • date_between():随机生成指定范围内日期,参数:start_date,end_date

  • date_between_dates():随机生成指定范围内日期,用法同上

  • date_object():随机生产从1970-1-1到指定日期的随机日期。

  • date_time():随机生成指定时间(1970年1月1日至今)

  • date_time_ad():生成公元1年到现在的随机时间

  • date_time_between():用法同dates

  • future_date():未来日期

  • future_datetime():未来时间

  • month():随机月份

  • month_name():随机月份(英文)

  • past_date():随机生成已经过去的日期

  • past_datetime():随机生成已经过去的时间

  • time():随机24小时时间

  • timedelta():随机获取时间差

  • time_object():随机24小时时间,time对象

  • time_series():随机TimeSeries对象

  • timezone():随机时区

  • unix_time():随机Unix时间

  • year():随机年份

9、python 相关方法

  • profile():随机生成档案信息

  • simple_profile():随机生成简单档案信息

  • pyiterable()

  • pylist()

  • pyset()

  • pystruct()

  • pytuple()

  • pydict()

可以用dir(fake),看Faker库都可以fake哪些数据,目前Faker支持近300种数据,此外还支持自己进行扩展。

有了这些生成数据函数之后用fake对象就可以调用不同的方法生成各种数据了。

3.3 常用数据场景

1、构造通讯录记录

from faker import Fakerfake = Faker(locale='zh_CN')for _ in range(5):    print('姓名:', fake.name(), ' 手机号:', fake.phone_number())    # 输出信息:姓名: 骆柳  手机号: 18674751460姓名: 薛利  手机号: 13046558454姓名: 翟丽丽  手机号: 15254904803姓名: 宋秀珍  手机号: 13347585045姓名: 孔桂珍  手机号: 18258911504

2、构造信用卡数据

from faker import Fakerfake = Faker(locale='zh_CN')print('Card Number:', fake.credit_card_number(card_type=None))print('Card Provider:', fake.credit_card_provider(card_type=None))print('Card Security Code:', fake.credit_card_security_code(card_type=None))print('Card Expire:', fake.credit_card_expire())# 输出信息:Card Number: 676181530350Card Provider: Diners Club / Carte BlancheCard Security Code: 615Card Expire: 09/21

3、生成个人档案信息

from faker import Fakerfake = Faker(locale='zh_CN')print(fake.profile())# 输出信息{'job': '美术指导', 'company': '易动力传媒有限公司', 'ssn': '370703197807179500', 'residence': '广西壮族自治区旭县蓟州东莞街L座 784064', 'current_location': (Decimal('78.3608745'), Decimal('-95.946407')), 'blood_group': 'B+', 'website': ['https://www.jiewang.org/', 'https://www.longsong.cn/', 'https://jingyong.net/', 'https://58.cn/'], 'username': 'qinqiang', 'name': '唐伟', 'sex': 'F', 'address': '新疆维吾尔自治区建华市东丽拉萨街a座 875743', 'mail': 'shenyang@hotmail.com', 'birthdate': datetime.date(2014, 4, 27)}

4、生成Python相关结构信息

from faker import Fakerfake = Faker(locale='zh_CN')print('生成Python字典: {}'.format(fake.pydict(    nb_elements=10, variable_nb_elements=True)))  # Python字典print('生成Python可迭代对象:{}.'.format(fake.pyiterable(    nb_elements=10, variable_nb_elements=True)))   # Python可迭代对象print('生成Python结构:{}'.format(fake.pystruct(count=1)))  # Python结构# 输出信息成Python字典: {'论坛': 'nVcSbHlrcrhIBtwByVUM', '直接': 'drkyFUNcNxdbwYKhRLEZ', '成功': 'https://fang.cn/main/search/blog/search/', '没有': datetime.datetime(2006, 2, 24, 15, 40, 14), '原因': 404, '作者': 'OTJjsFHQklpUvTPtLCqP'}生成Python可迭代对象:{1088, 'ignqbohwYRxqolLEzSti', 'http://gang.cn/main/search.php', 'zRnNYdIpPXUxEVISHbvS', 'ToZxuBetghvlPHUumAvi', 9830, 'OYAjoKeVNGhHMLgnYUAw', 970446.888, -17681479853.4069, 872236250787063.0, datetime.datetime(2017, 12, 24, 5, 58, 58), 'aRSfxiUSuMqHXvKCCkMJ'}生成Python结构:(['cKwOvdCEFOhCERMSMXSf'], {'只有': 'hhwGCmjkHMOUjBTDztXp'}, {'还有': {0: 'vjcNqpnRbNUUxXpgVyvh', 1: [8725, 7125, 'aTSJssAJUKpuRLcbiwyK'], 2: {0: 'RmWlFQQpVZIQkxZPfJnq', 1: 'efsUVLgeStXbCOJDuJCf', 2: ['FgZQLCRjUTmEbBdDMEPZ', 'https://min.cn/search/faq/']}}})

4. 自定义Faker数据类型

如果这些数据还不够生成数据使用,Faker还支持创建自定义的Provider生成数据。

from faker import Fakerfrom faker.providers import BaseProvider# 创建自定义Providerclass CustomProvider(BaseProvider):    def customize_type(self):        return 'test_Faker_customize_type'# 添加Providerfake = Faker()fake.add_provider(CustomProvider)print(fake.customize_type())

是不是十分简单,以后常用的数据就可以自己创建Provider用自动化的方法生成了,不仅节省了时间,复用性也变高了。

5. 总结

这些只是其中的一些常见的数据,Faker 可以造的数据远不止这些类型。相信通过本文的介绍,大家应该对 Faker 不陌生了吧。

此外,作为一个开源的库,Faker的源码是非常值得研究的,也是Python新手可以用来练开源项目的利器。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容