服务暴露将做哪些事情?
- 注册ZK,监听动态配置节点
- 开启Server端
- 创建代理服务
- Exporter -> Invoker -> proxyService
服务引用将做哪些事情?
- 注册ZK,监听动态配置节点、providr节点、路由节点
- 开启Client端
- 创建代理服务
- proxyService -> Invoker
客户端请求
ConsumerProxyService -> Invoker【DubboInvoker】 -> Exchanger【HeaderExchangeClient】 -> Transporter【NettyClient】 -> 编码 -> SEND-TO-SERVER (创建了DefaultFuture,Request带唯一标识)
服务端响应
解码 -> Transporter【NettyServer】-> 系列Handlers -> 线程池 -> Exporter#getInvoker -> Invoker#invoke -> ProviderProxyService -> callback
最开始看的就是觉得这一块涉及到的类好多啊,傻傻分不清楚,没事多看几遍吧
Exchanger
Exchangers
门面类,提供各种便捷方法,先通过SPI获取Exchanger
,然后调用Exchanger
的相关方法创建ExchangeServer
、ExchangeClient
Exchanger
SPI接口,默认实现类HeaderExchanger
,提供了两个快捷方法创建ExchangeServer
、ExchangeClient
@SPI(HeaderExchanger.NAME)
public interface Exchanger {
@Adaptive({Constants.EXCHANGER_KEY})
ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException;
@Adaptive({Constants.EXCHANGER_KEY})
ExchangeClient connect(URL url, ExchangeHandler handler) throws RemotingException;
}
public class HeaderExchanger implements Exchanger {
public static final String NAME = "header";
@Override
public ExchangeClient connect(URL url, ExchangeHandler handler) throws RemotingException {
return new HeaderExchangeClient(Transporters.connect(url, new DecodeHandler(new HeaderExchangeHandler(handler))), true);
}
@Override
public ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
return new HeaderExchangeServer(Transporters.bind(url, new DecodeHandler(new HeaderExchangeHandler(handler))));
}
}
ExchangeServer
Server端使用,默认实现类HeaderExchangeServer
,内部调用Transporter
开启Server服务
public interface ExchangeServer extends Server {
Collection<ExchangeChannel> getExchangeChannels();
ExchangeChannel getExchangeChannel(InetSocketAddress remoteAddress);
}
ExchangeClient
Client端使用,默认实现类HeaderExchangeClient
,核心request
方法,内部调用Transporter
发送请求
public interface ExchangeClient extends Client, ExchangeChannel {
}
ExchangeChannel
默认实现类 HeaderExchangeChannel
,作为HeaderExchangeClient
的一个属性
Transporter
Transporters
门面类,提供各种便捷方法,先通过SPI获取Transporter
,然后调用Transporter
的相关方法创建Server
、Client
Transporter
SPI接口,默认实现类NettyTransporter
,提供了两个快捷方法创建Server
、Client
@SPI("netty")
public interface Transporter {
@Adaptive({Constants.SERVER_KEY, Constants.TRANSPORTER_KEY})
Server bind(URL url, ChannelHandler handler) throws RemotingException;
@Adaptive({Constants.CLIENT_KEY, Constants.TRANSPORTER_KEY})
Client connect(URL url, ChannelHandler handler) throws RemotingException;
}
public class NettyTransporter implements Transporter {
public static final String NAME = "netty";
@Override
public Server bind(URL url, ChannelHandler listener) throws RemotingException {
return new NettyServer(url, listener);
}
@Override
public Client connect(URL url, ChannelHandler listener) throws RemotingException {
return new NettyClient(url, listener);
}
}
Server
Server端使用,默认实现类NettyServer
,用于开启Server服务,核心方法doOpen
public class NettyServer extends AbstractServer implements Server {
}
Client
Client端使用,默认实现类NettyClient
,核心request
方法用于发送请求,doOpen
用于与服务端建立连接
public class NettyClient extends AbstractClient {
}
服务端启动服务
DubboProtocol#export =>
DubboProtocol#openServer =>
DubboProtocol#createServer =>
Exchangers#bind =>
NettyServer#doOpen
最终,在NettyServer#doOpen
中通过Netty开启了一个Server端
DubboProtocol#createServer
=> Exchangers#bind(url, requestHandler)
=> HeaderExchanger#bind(url, requestHandler)
=> return new HeaderExchangeServer(Transporters.bind(url, new DecodeHandler(new HeaderExchangeHandler(handler))))
// Transporters#bind 语句可以拆解为
Transporters#bind
=> NettyTransporter#bind(url, handler)
=> return new NettyServer(url, handler)
=> NettyServer#doOpen【NettyServer构造函数中调用了doOpen方法】
即NettyServer
中的hander
属性,最终指向的是new DecodeHandler(new HeaderExchangeHandler(handler))
。最终Server端返回HeaderExchangeServer
,然后在NettyServer
的构造函数中,对handle
其实还做了一些封装
public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
// the handler will be warped: MultiMessageHandler->HeartbeatHandler->handler
super(url, ChannelHandlers.wrap(handler, ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME)));
}
public class ChannelHandlers {
private static ChannelHandlers INSTANCE = new ChannelHandlers();
protected ChannelHandlers() {}
public static ChannelHandler wrap(ChannelHandler handler, URL url) {
return ChannelHandlers.getInstance().wrapInternal(handler, url);
}
protected static ChannelHandlers getInstance() {
return INSTANCE;
}
static void setTestingChannelHandlers(ChannelHandlers instance) {
INSTANCE = instance;
}
protected ChannelHandler wrapInternal(ChannelHandler handler, URL url) {
return new MultiMessageHandler(new HeartbeatHandler(ExtensionLoader.getExtensionLoader(Dispatcher.class)
.getAdaptiveExtension().dispatch(handler, url)));
}
}
所以,最终NettyServer
中的hander
属性指向MultiMessageHandler -> HeartbeatHandler -> AllDispatcher -> DecodeHandler
客户端连接服务
调用链太长了,而且隐藏的非常深,重点省略了一些,在应用启动时为Reference对象生成Invoker时创建的
RegistryProtocol#doRefer =>
RegistryDirectory#subscribe =>
RegistryDirectory#toInvokers =>
ProtocolFilterWrapper#refer =>
AbstractProtocol#refer =>
DubboProtocol#protocolBindingRefer =>
DubboProtocol#getClients =>
DubboProtocol#getSharedClient =>
DubboProtocol#buildReferenceCountExchangeClientList =>
DubboProtocol#buildReferenceCountExchangeClient =>
DubboProtocol#initClient =>
Exchangers#connect =>
HeaderExchanger#connect =>
Transporters#connect =>
NettyTransporter#connect =>
NettyClient#<init> =>
NettyClient#doOpen
最终,在NettyClient#doOpen
中通过Netty与Server建立连接
Exchangers#connect
=> HeaderExchanger#connect(url, handler)
=> return new HeaderExchangeClient(Transporters.connect(url, new DecodeHandler(new HeaderExchangeHandler(handler))), true)
// Transporters#connect 语句可以拆解为
Transporters#connect
=> NettyTransporter#connect(url, handler)
=> return new NettyClient(url, handler)
=> NettyClient#doOpen【NettyClient构造函数中调用了doOpen方法】
即NettyClient
中的hander
属性,最终指向的是new DecodeHandler(new HeaderExchangeHandler(handler))
。最终Client端返回HeaderExchangeClient
,其中的client
属性也对NettyClient
做了包装处理
不过在DubboProtocol#buildReferenceCountExchangeClient
方法中对HeaderExchangeClient
包装了一层,最终Invoker中的Client类型是ReferenceCountExchangeClient
private ReferenceCountExchangeClient buildReferenceCountExchangeClient(URL url) {
ExchangeClient exchangeClient = initClient(url);
return new ReferenceCountExchangeClient(exchangeClient);
}
ReferenceCountExchangeClient
与HeaderExchangeClient
没什么区别,只不过包装了一层,然后还有一个比较重要的属性referenceCount
,用于记录客户端的个数?
客户端发送请求
调用方代理类 ->
InvokerInvocationHandler#invoke ->
MockClusterInvoker#invoke ->
AbstractClusterInvoker#invoke【获取LoadBalance】 ->
FailoverClusterInvoker#doInvoke【处理重试次数】 ->
ProtocolFilterWrapper#invoke【处理Filter链路】 ->
AbstractInvoker#invoke【设置Attachments参数】 ->
DubboInvoker#doInvoke【Exchange交接层】 ->
ReferenceCountExchangeClient#request ->
HeaderExchangeClient#request ->
HeaderExchangeChannel#request【return CompletableFuture】 ->
AbstractPeer#send ->
AbstractClient#send ->
NettyChannel#send ->
Channel#writeAndFlush【发消息给服务端】
从DubboInvoker#doInvoke
开始与Exchange层交互,核心代码如下
protected Result doInvoke(final Invocation invocation) throws Throwable {
ExchangeClient currentClient;
if (clients.length == 1) {
currentClient = clients[0];
} else {
currentClient = clients[index.getAndIncrement() % clients.length];
}
boolean isOneway = RpcUtils.isOneway(getUrl(), invocation);
// return = false,即oneWay ,可以减少不必要的Future对象创建
if (isOneway) {
// send=true,即客户端发送之后再返回,否则直接返回
boolean isSent = getUrl().getMethodParameter(methodName, Constants.SENT_KEY, false);
currentClient.send(inv, isSent);
RpcContext.getContext().setFuture(null);
return AsyncRpcResult.newDefaultAsyncResult(invocation);
} else {
AsyncRpcResult asyncRpcResult = new AsyncRpcResult(inv);
CompletableFuture<Object> responseFuture = currentClient.request(inv, timeout);
asyncRpcResult.subscribeTo(responseFuture);
RpcContext.getContext().setFuture(new FutureAdapter(asyncRpcResult));
return asyncRpcResult;
}
}
ReferenceCountExchangeClient#request =>
HeaderExchangeClient#request =>
HeaderExchangeChannel#request
// HeaderExchangeChannel.java
public CompletableFuture<Object> request(Object request, int timeout) throws RemotingException {
if (closed) {
throw new RemotingException(this.getLocalAddress(), null, "Failed to send request " + request + ", cause: The channel " + this + " is closed!");
}
// create request.
Request req = new Request();
req.setVersion(Version.getProtocolVersion());
req.setTwoWay(true);
req.setData(request);
DefaultFuture future = DefaultFuture.newFuture(channel, req, timeout);
try {
channel.send(req);
} catch (RemotingException e) {
future.cancel();
throw e;
}
return future;
}
在这个方法中,有以下几个需要注意的点:
- 在
Request
构造函数内部,会为Request
生成一个递增唯一的ID,用于标识该请求 -
channel#send
调用过程中,涉及到NettyChannel#getOrAddChannel
方法的调用,NettyChannel
中有一个ConcurrentMap<Channel, NettyChannel> CHANNEL_MAP
缓存,用于维护io.netty.channel.Channel
和NettyChannel
的关系 -
channel#send
调用过程中,最终会调用到NettyChannel#send
方法,该方法真正的将消息发给Server端 - 返回的
DefaultFuture
是一个CompletableFuture
// NettyChannel.java
public void send(Object message, boolean sent) throws RemotingException {
boolean success = true;
int timeout = 0;
try {
// 将消息发给Server
ChannelFuture future = channel.writeAndFlush(message);
if (sent) {
// 如果配置了 send=true 参数,客户端需要等待消息发出之后再返回
timeout = getUrl().getPositiveParameter(TIMEOUT_KEY, DEFAULT_TIMEOUT);
success = future.await(timeout);
}
Throwable cause = future.cause();
if (cause != null) {
throw cause;
}
} catch (Throwable e) {
throw new RemotingException(this, "Failed to send message " + message + " to " + getRemoteAddress() + ", cause: " + e.getMessage(), e);
}
if (!success) {
throw new RemotingException(this, "Failed to send message " + message + " to " + getRemoteAddress()
+ "in timeout(" + timeout + "ms) limit");
}
}
从上面消息发送的流程中,好像没有看到对消息的编码工作,那是因为在Netty客户端初始化的时候,已经设置了编解码器
// NettyClient.java
protected void doOpen() throws Throwable {
final NettyClientHandler nettyClientHandler = new NettyClientHandler(getUrl(), this);
bootstrap = new Bootstrap();
bootstrap.group(nioEventLoopGroup)
.option(ChannelOption.SO_KEEPALIVE, true)
.option(ChannelOption.TCP_NODELAY, true)
.option(ChannelOption.ALLOCATOR, PooledByteBufAllocator.DEFAULT)
.channel(NioSocketChannel.class);
if (getConnectTimeout() < 3000) {
bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 3000);
} else {
bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, getConnectTimeout());
}
bootstrap.handler(new ChannelInitializer() {
@Override
protected void initChannel(Channel ch) throws Exception {
int heartbeatInterval = UrlUtils.getHeartbeat(getUrl());
NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyClient.this);
ch.pipeline()
.addLast("decoder", adapter.getDecoder())
.addLast("encoder", adapter.getEncoder())
.addLast("client-idle-handler", new IdleStateHandler(heartbeatInterval, 0, 0, MILLISECONDS))
.addLast("handler", nettyClientHandler);
String socksProxyHost = ConfigUtils.getProperty(SOCKS_PROXY_HOST);
if(socksProxyHost != null) {
int socksProxyPort = Integer.parseInt(ConfigUtils.getProperty(SOCKS_PROXY_PORT, DEFAULT_SOCKS_PROXY_PORT));
Socks5ProxyHandler socks5ProxyHandler = new Socks5ProxyHandler(new InetSocketAddress(socksProxyHost, socksProxyPort));
ch.pipeline().addFirst(socks5ProxyHandler);
}
}
});
}
先经过编码器,即InternalEncoder#encode
方法,InternalEncoder
实现了MessageToByteEncoder
接口,该方法内部调用了Codec2
的相关方法,而Codec2
是一个SPI接口,默认实现DubboCodec
NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyServer.this);
protected static Codec2 getChannelCodec(URL url) {
String codecName = url.getParameter(Constants.CODEC_KEY, "telnet");
if (ExtensionLoader.getExtensionLoader(Codec2.class).hasExtension(codecName)) {
return ExtensionLoader.getExtensionLoader(Codec2.class).getExtension(codecName);
} else {
return new CodecAdapter(ExtensionLoader.getExtensionLoader(Codec.class).getExtension(codecName));
}
}
服务端响应请求
上面提到了NettyServer
中的hander
属性指向 MultiMessageHandler -> HeartbeatHandler -> AllDispatcher -> DecodeHandler -> HeaderExchangeHandler
而NettyServer
开启Server端的代码如下
protected void doOpen() throws Throwable {
bootstrap = new ServerBootstrap();
bossGroup = new NioEventLoopGroup(1, new DefaultThreadFactory("NettyServerBoss", true));
workerGroup = new NioEventLoopGroup(getUrl().getPositiveParameter(IO_THREADS_KEY, Constants.DEFAULT_IO_THREADS),
new DefaultThreadFactory("NettyServerWorker", true));
final NettyServerHandler nettyServerHandler = new NettyServerHandler(getUrl(), this);
channels = nettyServerHandler.getChannels();
bootstrap.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.childOption(ChannelOption.TCP_NODELAY, Boolean.TRUE)
.childOption(ChannelOption.SO_REUSEADDR, Boolean.TRUE)
.childOption(ChannelOption.ALLOCATOR, PooledByteBufAllocator.DEFAULT)
.childHandler(new ChannelInitializer<NioSocketChannel>() {
@Override
protected void initChannel(NioSocketChannel ch) throws Exception {
int idleTimeout = UrlUtils.getIdleTimeout(getUrl());
NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyServer.this);
ch.pipeline()//.addLast("logging",new LoggingHandler(LogLevel.INFO))//for debug
.addLast("decoder", adapter.getDecoder())
.addLast("encoder", adapter.getEncoder())
.addLast("server-idle-handler", new IdleStateHandler(0, 0, idleTimeout, MILLISECONDS))
.addLast("handler", nettyServerHandler);
}
});
ChannelFuture channelFuture = bootstrap.bind(getBindAddress());
channelFuture.syncUninterruptibly();
channel = channelFuture.channel();
}
- 先经过解码器,即
InternalDecoder#decode
方法,InternalDecoder
实现了ByteToMessageDecoder
接口,该方法内部调用了Codec2
的相关方法,而Codec2
是一个SPI接口,默认实现DubboCodec
NettyCodecAdapter adapter = new NettyCodecAdapter(getCodec(), getUrl(), NettyServer.this);
protected static Codec2 getChannelCodec(URL url) {
String codecName = url.getParameter(Constants.CODEC_KEY, "telnet");
if (ExtensionLoader.getExtensionLoader(Codec2.class).hasExtension(codecName)) {
return ExtensionLoader.getExtensionLoader(Codec2.class).getExtension(codecName);
} else {
return new CodecAdapter(ExtensionLoader.getExtensionLoader(Codec.class).getExtension(codecName));
}
}
-
MultiMessageHandler
用于处理数组消息,如果是消息是MultiMessage
类型,MultiMessage
实现了Iterable
数组,则遍历调用handle的received方法;否则直接调用下一个handle的received方法 -
AllChannelHandler
收到消息,将channel handler message
封装成state为ChannelState.RECEIVED
类型的ChannelEventRunnable
对象,然后交给线程池执行 -
ChannelEventRunnable#run
方法中判断state为ChannelState.RECEIVED
类型,直接执行下一个handler的received方法,即DecodeHandler
,这个过程是由线程池执行 -
DecodeHandler#received
方法中,如果消息是Decodeable
类型,对整个消息进行解码;如果消息是Request
类型,对Request.getData()
进行解码;如果消息是Response
类型,对Response.getResult()
进行解码 -
HeaderExchangeHandler#received
->HeaderExchangeHandler#handleRequest
->requestHandler#reply
,requestHandler
是DubboProtocol
中的一个属性,ExchangeHandlerAdapter
类型 -
HeaderExchangeHandler#handleRequest
中会创建一个Response
对象,它的ID属性值,就是Request
对象的ID值,这样请求和响应就关联起来了 -
requestHandler#reply
方法中,从exporterMap
缓存中获取对应的DubboExporter
对象,然后从DubboExporter
获取Invoker
,最后执行Invoker#invoke
方法,然后返回一个CompletableFuture
对象 -
HeaderExchangeHandler#handleRequest
方法中接收返回的CompletableFuture
对象,对它添加回调处理,在回调中将返回结果封装到Response
对象中,然后通过channel将Response
发出
// ChannelEventRunnable.java
public void run() {
if (state == ChannelState.RECEIVED) {
try {
// RECEIVED 类型,直接执行下一个handle的received方法,即 DecodeHandler
handler.received(channel, message);
} catch (Exception e) {}
} else {
switch (state) {
case CONNECTED:
try {
handler.connected(channel);
} catch (Exception e) {}
break;
case DISCONNECTED:
try {
handler.disconnected(channel);
} catch (Exception e) {}
break;
case SENT:
try {
handler.sent(channel, message);
} catch (Exception e) {}
break;
case CAUGHT:
try {
handler.caught(channel, exception);
} catch (Exception e) {}
break;
default:
logger.warn("unknown state: " + state + ", message is " + message);
}
}
}
InternalDecoder#decode
=> NettyServerHandler#channelRead
=> AbstractPeer#received
=> MultiMessageHandler#received
=> HeartbeatHandler#received
=> AllChannelHandler#received
------------------ 异步执行,放到线程池 ----------------------
=> ChannelEventRunnable#run
=> DecodeHandler#received
=> DecodeHandler#decode
=> DecodeableRpcInvocation#decode
=> HeaderExchangeHandler#received
=> HeaderExchangeHandler#handleRequest
=> DubboProtocol.requestHandler#reply
------------------ 异步执行 -----------------------
----------------扩展点-------------------
=> ProtocolFilterWrapper.invoke
=> EchoFilter.invoke
=> ClassLoaderFilter.invoke
=> GenericFilter.invoke
=> TraceFilter.invoke
=> MonitorFilter.invoke
=> TimeoutFilter.invoke
=> ExceptionFilter.invoke
=> InvokerWrapper.invoke
-----------------扩展点-------------------
=> AbstractProxyInvoker#invoke
=> JavassistProxyFactory.AbstractProxyInvoker#doInvoke
=> 代理类#invokeMethod
=> 真正的service方法
//把接收处理的结果,数据发回consumer future#whenComplete
=> channel.send(response)
=> HeaderExchangeChannel
=> NettyChannel.send
=> NioSocketChannel#writeAndFlush(message)
服务端发送结果
HeaderExchangeChannel#send =>
NettyChannel#send =>
NioSocketChannel#writeAndFlush(message)
客户端响应结果
在客户端启动的时候,入参handler和服务端的handler是同一个
// DubboProtocol#initClient
Exchangers.connect(url, requestHandler);
// HeaderExchanger#connect
public ExchangeClient connect(URL url, ExchangeHandler handler) throws RemotingException {
return new HeaderExchangeClient(Transporters.connect(url, new DecodeHandler(new HeaderExchangeHandler(handler))), true);
}
Transporters#connect =>
NettyTransporter#connect
return NettyClient
在NettyClient
构造函数中,对handler做了包装
ChannelHandlers.wrap(handler, url)
public class ChannelHandlers {
private static ChannelHandlers INSTANCE = new ChannelHandlers();
protected ChannelHandlers() {
}
public static ChannelHandler wrap(ChannelHandler handler, URL url) {
return ChannelHandlers.getInstance().wrapInternal(handler, url);
}
protected static ChannelHandlers getInstance() {
return INSTANCE;
}
static void setTestingChannelHandlers(ChannelHandlers instance) {
INSTANCE = instance;
}
protected ChannelHandler wrapInternal(ChannelHandler handler, URL url) {
return new MultiMessageHandler(new HeartbeatHandler(ExtensionLoader.getExtensionLoader(Dispatcher.class)
.getAdaptiveExtension().dispatch(handler, url)));
}
}
所以,最终NettyClient
中的handler属性指向 MultiMessageHandler -> HeartbeatHandler -> AllChannelHandler -> DecodeHandler -> HeaderExchangeHandler -> requestHandler
,和服务端处理流程一样一样
- 接收消息,经过
MultiMessageHandler
、HeartbeatHandler
处理,到达AllDispatcher
-
AllChannelHandler
中将消息封装成new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message)
类型,交由线程池执行 - 线程池执行任务,经过
DecodeHandler
到达HeaderExchangeHandler
-
HeaderExchangeHandler#received -> HeaderExchangeHandler#handleResponse -> DefaultFuture#received
,DefaultFuture
中维护了一个请求ID和DefaultFuture的映射关系
,Request和Response通过请求ID可以一一对应
public static void received(Channel channel, Response response, boolean timeout) {
try {
DefaultFuture future = FUTURES.remove(response.getId());
if (future != null) {
Timeout t = future.timeoutCheckTask;
if (!timeout) {
t.cancel();
}
future.doReceived(response);
} else {
}
} finally {
CHANNELS.remove(response.getId());
}
}
private void doReceived(Response res) {
if (res == null) {
throw new IllegalStateException("response cannot be null");
}
if (res.getStatus() == Response.OK) {
this.complete(res.getResult());
} else if (res.getStatus() == Response.CLIENT_TIMEOUT || res.getStatus() == Response.SERVER_TIMEOUT) {
this.completeExceptionally(new TimeoutException(res.getStatus() == Response.SERVER_TIMEOUT, channel, res.getErrorMessage()));
} else {
this.completeExceptionally(new RemotingException(channel, res.getErrorMessage()));
}
}
- 通过
response.Id
获取DefaultFuture
- 执行
CompletableFuture#complete
方法可以让 执行了CompletableFuture#get
的用户线程得到响应,获取结果返回。至此整个调用过程完成
同步转异步
可是我们在代码中很多时候都是同步调用,很少自己去调用CompletableFuture#get
方法,这一部分逻辑又是怎么处理的。在DubboInvoker#doInvoke
方法中,返回的是一个AsyncRpcResult
protected Result doInvoke(final Invocation invocation) throws Throwable {
RpcInvocation inv = (RpcInvocation) invocation;
final String methodName = RpcUtils.getMethodName(invocation);
inv.setAttachment(PATH_KEY, getUrl().getPath());
inv.setAttachment(VERSION_KEY, version);
ExchangeClient currentClient;
if (clients.length == 1) {
currentClient = clients[0];
} else {
currentClient = clients[index.getAndIncrement() % clients.length];
}
try {
boolean isOneway = RpcUtils.isOneway(getUrl(), invocation);
int timeout = getUrl().getMethodPositiveParameter(methodName, TIMEOUT_KEY, DEFAULT_TIMEOUT);
// return = false,即oneWay ,可以减少不必要的Future对象创建
if (isOneway) {
boolean isSent = getUrl().getMethodParameter(methodName, Constants.SENT_KEY, false);
currentClient.send(inv, isSent);
RpcContext.getContext().setFuture(null);
return AsyncRpcResult.newDefaultAsyncResult(invocation);
} else {c
AsyncRpcResult asyncRpcResult = new AsyncRpcResult(inv);
CompletableFuture<Object> responseFuture = currentClient.request(inv, timeout);
// 订阅 responseFuture ,当 responseFuture 完成的之后,执行 asyncRpcResult 的complete方法, 这样用户线程就可以响应了
asyncRpcResult.subscribeTo(responseFuture);
RpcContext.getContext().setFuture(new FutureAdapter(asyncRpcResult));
return asyncRpcResult;
}
} catch (TimeoutException e) {
throw new RpcException(RpcException.TIMEOUT_EXCEPTION, "Invoke remote method timeout. method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
} catch (RemotingException e) {
throw new RpcException(RpcException.NETWORK_EXCEPTION, "Failed to invoke remote method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
}
}
AsyncToSyncInvoker
在AsyncToSyncInvoker#invoke
方法中,会判断是同步调用还是异步调用,如果是同步调用,将调用AsyncRpcResult#get
方法阻塞用户线程,以达到同步效果
public Result invoke(Invocation invocation) throws RpcException {
Result asyncResult = invoker.invoke(invocation);
try {
if (InvokeMode.SYNC == ((RpcInvocation) invocation).getInvokeMode()) {
// 如果是同步调用,调用 asyncResult#get 阻塞用户线程
asyncResult.get(Integer.MAX_VALUE, TimeUnit.MILLISECONDS);
}
} catch (InterruptedException e) {
throw new RpcException("Interrupted unexpectedly while waiting for remoting result to return! method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
} catch (ExecutionException e) {
Throwable t = e.getCause();
if (t instanceof TimeoutException) {
throw new RpcException(RpcException.TIMEOUT_EXCEPTION, "Invoke remote method timeout. method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
} else if (t instanceof RemotingException) {
throw new RpcException(RpcException.NETWORK_EXCEPTION, "Failed to invoke remote method: " + invocation.getMethodName() + ", provider: " + getUrl() + ", cause: " + e.getMessage(), e);
}
} catch (Throwable e) {
throw new RpcException(e.getMessage(), e);
}
return asyncResult;
}