DFS (深度优先遍历)和 BFS (广度优先遍历)

  <div class="parent">
    <div class="child-1">
      <div class="child-1-1">
        <div class="child-1-1-1">
          <div>342</div>
        </div>
      </div>
      <div class="child-1-2">
        <div class="child-1-2-1">b</div>
      </div>
      <div class="child-1-3">c</div>
    </div>
    <div class="child-2">
      <div class="child-2-1">d</div>
      <div class="child-2-2">e</div>
    </div>
    <div class="child-3">
      <div class="child-3-1">f</div>
    </div>
  </div>

这里用一棵dom树来做说明

深度优先遍历

假设初始状态的时候图中的所有顶点均未被访问,则从某个个顶点v出发,首先访问该顶点,然后从它的各个未被访问的邻接点出发进行向下遍历

  • 递归操作
const deepTraversal1 = (node, nodeList = []) => {
  if (node !== null) {
    nodeList.push(node)
    let children = node.children
    for (let i = 0; i < children.length; i++) {
      deepTraversal1(children[i], nodeList)
    }
  }
  return nodeList
}
  • 非递归
// 深度遍历 方法一: 非递归方式实现
const deepTraversal2 = (node) => {
  let stack = []
  let nodes = []
  if (node) {
    // 推入当前处理的node
    stack.push(node)
    while (stack.length) {
      let item = stack.pop()
      let children = item.children
      nodes.push(item)
      // node = [] stack = [parent]
      // node = [parent] stack = [child3,child2,child1]
      // node = [parent, child1] stack = [child3,child2,child1-2,child1-1]
      // node = [parent, child1-1] stack = [child3,child2,child1-2]
      for (let i = children.length - 1; i >= 0; i--) { // mei
        stack.push(children[i])
      }
    }
  }
  return nodes
}

解释下最后一个:(可能会后面的广度优先冲突)
这个是深度优先的,你看看它最后的循环,是从末尾开始,也就是说,再下一次循环进来的时候,每次出栈都是从后面最后一个开始[其实已经到了子节点的范畴了】,[(当前节点的子节点是被放在栈的后面)

广度优先遍历

从图中的某个顶点v出发,在访问v之后依次访问v的各个未曾相邻的邻接节点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。

const widthTraversal = (node) => {
  let nodes = []
  let queue = []
  console.log('start')
  if (node) {
    queue.push(node)
    while (queue.length) {
      let item = queue.shift()
      let children = item.children
      console.log(item)
      nodes.push(item)
        // 队列,先进先出
        // nodes = [] stack = [parent]
        // nodes = [parent] stack = [child1,child2,child3]
        // nodes = [parent, child1] stack = [child2,child3,child1-1,child1-2]
        // nodes = [parent,child1,child2]
      for (let i = 0; i < children.length; i++) {
        queue.push(children[i])
      }
    }
  }
  return nodes
}
const parent = document.querySelector('.parent')
// const result = deepTraversal1(parent) // 深度遍历 递归
// const result = deepTraversal2(parent) // 深度遍历 非递归
console.log('123')
const result = widthTraversal(parent) // 广度遍历
console.log(result)

参考:https://github.com/Advanced-Frontend/Daily-Interview-Question/issues/9

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容