【学习】python数据结构和算法

https://www.bilibili.com/video/BV1VC4y1x7uv?p=85

二、算法分析

2.2 什么是算法分析
  • 大O表示法


    image.png
2.3 python数据结构的性能
  • 列表


    image.png
  • 字典


    image.png

说一下list[index]的o(1)原理,dict是散列表形式,访问函数是o(1)很容易理解。但实际上list的访问函数我认为也是一种“散列表”,或者直接是额外空间的赋值存在。即在原始的线性结构(链表)外,为了能够快速访问(毕竟索引是最必须和高频的函数)而采用了额外空间来加速访问。一种简单的形式就是,比如list[1]用node_1来赋值,list[n]用node_n来赋值,需要访问时,直接去找node_index就可以了,这是最简单的方式。(书上的实现形式并不是python真正的实现形式)

三、基本数据结构类型

3.2 线性结构

包括栈、队列、双端队列和列表。
栈:先进后出
队列:先进先出
双端队列:允许先进先出\先进后出,典型场景是回文词判定
列表:这里考虑无序列表需要的方法:

  • class node: node.getData, node.getNext, node.setData, node.setNext
  • class unorderdlist: unorderdlist.add, 其他就是常规函数,isempty, search等。。

四、递归Recursion

4.2 什么是递归

递归三大定律

  • 必须有基本结束条件
  • 必须改变自己的状态并向基本结束条件演进
  • 必须递归地调用自身

典型问题1:谢尔宾斯基三角

  • 结束条件:剩余迭代次数>=1
  • 演进和递归调用:
    1、把中间的三角形剔除;2、把左边三角形进行迭代;3、把上边三角形进行迭代;4、把右边三角形迭代

典型问题2:河内塔问题

  • 结束条件:小塔层数为1(只有一个圆盘)
  • 演进和递归调用:
    1、把底盘上面的小塔从起点移到中间点,小塔进行迭代;2、把底盘从起点移到终点;
    3、把底盘上面的小塔从中间点移到终点,小塔进行迭代
4.5 动态规划

典型问题:硬币找零
先说一下贪心算法:先找面值最大的硬币,剩下的零散的余额再用剩下的面值最大的硬币来找零。。显然在此场景下不是最优解
动态规划本质上是一个递归问题:

def recDC(coinValueList,change,knownResults):
    minCoins = knownResults[change]  #在此场景下,最大的次数就是余额本身,所以这里相当于是赋的初值为最大值
    if change in coinValueList:
        knownResults[change] = 1
        return 1
    if minCoins < change:
        return minCoins
    else:
        for i in [c for c in coinValueList if c <= change]:
            numCoins = 1 + recDC(coinValueList, change-i, knownResults)
            if numCoins < minCoins:
                minCoins = numCoins
                knownResults[change] = minCoins
        return minCoins

knownResults = list(range(64))
print(recDC([1,5,10,25],63,knownResults))
  • 设定一个初始列表,来保存每一个值条件下的最优解,初值设为最差解
  • 依次对列表中的值进行迭代,求解当前值的最优解:
    1、如果有一个明确的最优解,那就是本身(此场景下就是对应找零余额存在合适的硬币);
    2、 没有最优解,则求解依次减去之前的值,再用新值去求最优解,并用最后的复合答案最优解,依次迭代;
    3、完全迭代后,用最优解中的最优解作为当前值的最优解。。。

五、排序和搜索

5.2 搜索
  • 顺序搜索
    无序表直接进行顺序搜索,o(n)
  • 二分搜索
    无序表可以先进行排序(额外消耗),再进行有序列表的搜索,o(logn),在要进行大量搜索的时候综合效率最高。如果本身只执行单次搜索,效果可能不如顺序搜索
5.2.3 散列

  • 散列表的每一个位置是槽
  • 负载因子
    数据项个数/散列表大小
  • 冲突
  • 完美散列函数
    实际上并不需要完美散列函数,而是用解决冲突的办法来合理利用槽
  • 冲突解决方法
    线性探测:寻找开放地址,但容易产生集中趋势,造成周边一系列槽都被线性探测填充;
    二次探测法:不进行线性探测,而是采用一个再散列函数来寻找新的槽
5.3 排序
  • 冒泡排序
    对列表相邻两项进行比较,并交换顺序确保后一项大于前一项,每一轮遍历完成则有一个最大值排到最后的位置。o(n2)
  • 选择排序
    每遍历一次只交换一次数据,即将最大项放到最后的位置。o(n2)
  • 插入排序
    依次将列表前方进行排序,然后将后一项插入到前方已排序好的列表中正确位置。o(n2)
  • 希尔排序
    间隔插入排序,以插入排序为基础。大致介于O(n)和O(n2)之间。
  • 归并排序
    分而治之,持续地将一个列表分成两半。如果列表是空的或者
    只有一个元素,那么根据定义,它就被排序好了(最基本的情况)。如果列表里的元素超过一个,我们就把列表拆分,然后分别对两个部分调用递归排序。一旦这两个部分被排序好了,那么就是归并好了。O(nlogn),效率是最高的,但是需要额外的空间来进行两个归并数组的比较。
  • 快速排序
    同样是分而治之,选择一个中值,并确定好中值在列表中正确的位置;将中值的左列表和右列表进行中值迭代排序。O(nlogn)~O(n2)之间,但不需要额外的存储空间。

六、树和树算法

6.2 术语
  • 节点:又可细分为根节点、子节点、叶节点(没有子节点的节点)、父节点、兄弟节点
  • 子树
  • 层数(根节点层数为0),高度(所有层数的最大值)
  • 路径、边
6.4 嵌套列表来实现树
myTree = ['a', ['b', ['d',[],[]], ['e',[],[]] ], ['c', ['f',[],[]], []] ]
image.png

所以对树的class可以基于列表实现

6.7 树的遍历
  • 前序遍历:先根后左再右
  • 中序遍历:先左后根再右
  • 后序遍历:先左后右再根
image.png

遍历的方式决定了读树的方式,比如上面这一棵解析树,只有中序遍历是对的,(7+3)*(5-2)

6.8 二叉堆/二叉树(优先队列)

除了先进先出、先进后出、双端队列之外,二叉堆可以实现特定的优先队列先出。二叉树的关键是保持根节点是最小值,但是对其他节点不进行排序。
完全二叉树,是指左子树和右子树相对平衡,最多只相差一层的二叉树。
生成完全二叉树的复杂度是o(n),理论上对列表进行排序的复杂度是o(n2),但是二叉树只是保持最小值在根节点,有点类似于在无序列表中寻找最小值的复杂度是o(n)。

6.9 二叉搜索树/BTS搜索树

定义:始终保持左节点<父节点<右节点
bts搜索树在极端情况下就一棵树到底,因此更广泛采用平衡二叉树

6.10 平衡二叉树/AVL树

AVL树在生成树的时候会引入平衡因子+旋转的操作来使得整体始终保持平衡

image.png

仿佛这里有问题,排好序的列表put和del的复杂度应该也是log2(n)才对,按照二分法来定位

七、图和图算法

7.2 概念
  • 顶点
  • 权重
  • 路径
7.3 实现形式
  • 邻接矩阵(稀疏度通常特别大)
  • 邻接表(更常用)
7.7 广度优先搜索(BFS)

词梯问题:寻找由fool到sage最短的路径


7.8 深度优先搜索(DFS)

骑士周游问题(下图并不代表实际问题):


image.png

每个节点记录两个值:发现时间和结束时间,典型特性是返回时间更晚的(父节点)优先级总是要高于返回时间更早的(子节点),所以要实现深度搜索(所有节点都必须覆盖),就得先通过父节点,再通过子节点。。适用于各种需要优先级排序的场景,比如制作一个煎饼


image.png
7.11 dijkstra(BFS)

对于需要考虑权重的广度搜索问题,dijkstra算法:每一个节点记录源节点到当前节点的最短路径

7.12 prim(DFS)

对于需要走遍所有节点,但是为了保证路径代价最小的问题,prim算法:每一个节点记录源节点到当前已发现树(包含多个已发现节点)的最短路径。。。走到最后一个节点的时候,记录的就是源节点要走遍所有节点所需要的代价。。(书中的图不对,每个节点记录的值仍然是dijkstra)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容