各个公司的大数据架构

美团

image

image

数据收集特性:

对于数据收集平台,日志数据是多接口的,可以打到文件里观察文件,也可以更新数据库表。关系型数据库是基于Binlog获取增量的,如果做数据仓库的话有大量的关系型数据库,有一些变更没法发现等情况,可以通过Binlog手段可以解决。通过一个Kafka消息队列集中化分发支持下游,目前支持了850以上的日志类型,峰值每秒有百万介入。

流式计算平台特性:

构建流式计算平台的时候充分考虑了开发的复杂度,基于Storm。有一个在线的开发平台,测试开发过程都在在线平台上做,提供一个相当于对Storm应用场景的封装,有一个拓扑开发框架,因为是流式计算,我们也做了延迟统计和报警,现在支持1100以上的实时拓扑,秒级实时数据流延迟。这上面可以配置公司内部定的某个参数,某个代码,可以在平台上编译有调试。

离线数据平台:

最下面是三个基础服务,包括Yarn、HDFS、HiveMeta。不同的计算场景提供不同的计算引擎支持。如果是新建的公司,其实这里是有一些架构选型的。Cloud Table是自己做的HBase分装封口。我们使用Hive构建数据仓库,用Spark在数据挖掘和机器学习,Presto支持Adhoc上查询,也可能写一些复杂的SQL。对应关系这里Presto没有部署到Yarn,跟Yarn是同步的,Spark是on Yarn跑。

微软

lambda 架构 -> Kappa 架构

lambda 架构首先由 Nathan Marz 提出,通过创建两个数据流路径来解决此问题。 所有进入系统的数据都经过这两个路径:
批处理层(冷路径)以原始形式存储所有传入数据,对数据进行批处理。 该处理的结果作为批处理视图存储。
速度层(热路径)可实时分析数据。 设计此层是为了降低延迟,但代价是准确性也会降低。


image

Kappa 架构由 Jay Kreps 提出,用于替代 Lambda 架构。 它具有与 lambda 体系结构相同的基本目标,但有一个重要区别:所有数据流经一个路径,使用一个流处理系统。


image

Airbnb

image

Airbnb 数据源主要来自两方面:数据埋点发送事件日志到 Kafka;MySQL 数据库 dumps 存储在 AWS 的 RDS,通过数据传输组件 Sqoop 传输到 Hive集群。

包含用户行为以及纬度快照的数据发送到 Hive“金”集群存储,并进行数据清洗。这步会做些业务逻辑计算,聚合数据表,并进行数据校验。

Airbnb 采用 Presto 来查询 Hive 表,代替 Oracle、 Teradata、 Vertica、 Redshift 等。在未来,希望可以直接用 Presto 连接 Tableau。

Airpal,一个基于 Presto,web 查询系统,已经开源。Airpal 是 Airbnb 公司用户基于数据仓库的即席 SQL 查询借口,有超过 1/3 的 Airbnb 同事在使用此工具查询。任务调度系统Airflow ,可以跨平台运行 Hive,Presto,Spark,MySQL 等 Job,并提供调度和监控功能。

迁移到 Mesos 计算框架后,可以选择不同类型的机器运行不同的集群。比如,选择 AWS c3.8xlarge 实例运行 Spark。AWS 后来发布了“D 系列”实例。从 AWS c3.8xlarge 实例每节点远程的 3 TB 存储迁移数据到 AWS d2.8xlarge 4 TB 本地存储,这给 Airbnb 公司未来三年节约了上亿美元。

有赞

整合KylinMondrianSaiku来实现大数据场景下的OLAP分析。

Reference:

  1. 美团的大数据平台架构实践
  2. 大数据架构
  3. 大数据分析的下一代架构--IOTA架构设计实践
  4. Airbnb 的大数据平台架构
  5. Kylin, Mondrian, Saiku系统的整合
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352