Unlock
函数一:全局变量A的值每次加1,循环10次,并打印
def job1():
global A
for i in range(10):
A+=1
print('job1',A)
函数二:全局变量A的值每次加10,循环10次,并打印
def job2():
global A
for i in range(10):
A+=10
print('job2',A)
主函数:定义两个线程,分别执行函数一和函数二
if __name__== '__main__':
A=0
t1=threading.Thread(target=job1)
t2=threading.Thread(target=job2)
t1.start()
t2.start()
t1.join()
t2.join()
完整代码:
import threading
def job1():
global A
for i in range(10):
A+=1
print('job1',A)
def job2():
global A
for i in range(10):
A+=10
print('job2',A)
if __name__== '__main__':
lock=threading.Lock()
A=0
t1=threading.Thread(target=job1)
t2=threading.Thread(target=job2)
t1.start()
t2.start()
t1.join()
t2.join()
运行结果(在spyder编译器下运行的打印结果):
job1job2 11
job2 21
job2 31
job2 41
job2 51
job2 61
job2 71
job2 81
job2 91
job2 101
1
job1 102
job1 103
job1 104
job1 105
job1 106
job1 107
job1 108
job1 109
job1 110
可以看出,打印的结果非常混乱
使用 Lock 的情况
lock在不同线程使用同一共享内存时,能够确保线程之间互不影响,使用lock的方法是, 在每个线程执行运算修改共享内存之前,执行lock.acquire()
将共享内存上锁, 确保当前线程执行时,内存不会被其他线程访问,执行运算完毕后,使用lock.release()
将锁打开, 保证其他的线程可以使用该共享内存。
函数一和函数二加锁
def job1():
global A,lock
lock.acquire()
for i in range(10):
A+=1
print('job1',A)
lock.release()
def job2():
global A,lock
lock.acquire()
for i in range(10):
A+=10
print('job2',A)
lock.release()
主函数中定义一个Lock
if __name__== '__main__':
lock=threading.Lock()
A=0
t1=threading.Thread(target=job1)
t2=threading.Thread(target=job2)
t1.start()
t2.start()
t1.join()
t2.join()
完整的代码
import threading
def job1():
global A,lock
lock.acquire()
for i in range(10):
A+=1
print('job1',A)
lock.release()
def job2():
global A,lock
lock.acquire()
for i in range(10):
A+=10
print('job2',A)
lock.release()
if __name__== '__main__':
lock=threading.Lock()
A=0
t1=threading.Thread(target=job1)
t2=threading.Thread(target=job2)
t1.start()
t2.start()
t1.join()
t2.join()
运行结果
job1 1
job1 2
job1 3
job1 4
job1 5
job1 6
job1 7
job1 8
job1 9
job1 10
job2 20
job2 30
job2 40
job2 50
job2 60
job2 70
job2 80
job2 90
job2 100
job2 110
从打印结果来看,使用lock
后,一个一个线程执行完。使用lock
和不使用lock
,最后打印输出的结果是不同的。