Python数据处理笔记

Python有多容易忘记, 如果不整理, 过一段时间就完全重新学了. 所以借着这一些练习, 把自己学过的东西记录并总结, 才方便日后回顾.

import pandas as pd
另外可以导入Series和DataFrame,因为这两个经常被用到:

from pandas import Series, DataFrame

DataFrame

生成DataFrame的若干种方式

从文件中来: 最常见的方式

手动生成: 可以根据自己的喜好来定制数据

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'], 
        'year': [2000, 2001, 2002, 2001, 2002, 2003], 
        'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
df = pd.DataFrame(data)

一种比较漂亮的生成方式, 里面用的state, year, pop 都成为了columns:

>>> frame.columns
Index(['pop', 'state', 'year'], dtype='object')

    pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002
5  3.2  Nevada  2003

但是这种方式通常只能适合于比较小的Dict, 如果有定制好的数据集, 那么就要通过dict() 生成各种各样的dictionary对象. 对dict的操作在这里按下不表

获取DataFrame的信息

可以把DataFrame当成一个Excel表格来看待

df2.index看对列序号:

df.columns每一列的名字

隐藏index columns , 只看df2values:

print(df2.values)

"""
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
       [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)
"""

describe():数据总结, 返回数据的mean, std, count

df2.describe()

"""
         A    C    D
count  4.0  4.0  4.0
mean   1.0  1.0  3.0
std    0.0  0.0  0.0
min    1.0  1.0  3.0
25%    1.0  1.0  3.0
50%    1.0  1.0  3.0
75%    1.0  1.0  3.0
max    1.0  1.0  3.0
"""

df.T:翻转数据的行列,比较常用的地方如果要对行进行索引

sort_index 进行排序并输出:

print(df2.sort_index(axis=1, ascending=False))

数据中的类型用 dtype这个属性:

print(df2.dtypes)

索引的方式

逗号分开行与列, 如果要分别选取多个行和多个列, 使用['col1','col2'] 分别列出需要的行列

1. ['col'] 字典的访问方式和对象访问方式

data['Colorado']字典的访问方式 [] 内为要访问的Key

data.Colorado 对象访问方式

注意: 这两种方式都不可以使用数字访问

2. iloc根据行列的位置

data.loc['Colorado', ['two', 'three']]
data.loc[:,['two']] #选出two所在的列

3. iloc 根据行列的名称

iloc实现相同的效果:

data.iloc[2, [3, 0, 1]]

4. ix 混合两种方式

Index 和 Column的选取/重命名

第一个参数为内容,

    groupedDF = pd.DataFrame(grouped, columns=['User Id', 'Rating'] , index= [for i in range (len(grouped))])

df.groupby()

根据'Pclass' 求平均

data.groupby('User Id')['Rating'].mean()
data.groupby('User Id').mean()['Rating']
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351