【爬虫+情感判定+Top10高频词+词云图】"刘畊宏"热门弹幕python舆情分析

一、背景介绍

最近一段时间,刘畊宏真是火出了天际,引起一股全民健身的热潮,毕竟锻炼身体,是个好事!

针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众多网友弹幕的舆论导向,下面我们来看一下,是如何实现的分析过程。

二、代码讲解-爬虫部分

2.1 分析弹幕接口

首先分析B站弹幕接口。

经过分析,得到的弹幕地址有两种:

第一种:http://comment.bilibili.com/{cid}.xml
第二种:https://api.bilibili.com/x/v1/dm/list.so?oid={cid}

这两种返回的结果一致!但都不全,都是只有部分弹幕!

以B站视频 https://www.bilibili.com/video/BV1Pa411v7vg 为例,查看网页源代码,可以找到对应的cid为574147025,所以该视频对应的弹幕接口地址是:http://comment.bilibili.com/574147025.xml

xml.png

既然这样,就好办了,开始撸代码!

2.2 讲解爬虫代码

首先,导入需要用到的库:

import re  # 正则表达式提取文本
import requests  # 爬虫发送请求
from bs4 import BeautifulSoup as BS  # 爬虫解析页面
import time
import pandas as pd  # 存入csv文件
import os

然后,向视频地址发送请求,解析出cid号:

r1 = requests.get(url=v_url, headers=headers)
html1 = r1.text
cid = re.findall('cid=(.*?)&aid=', html1)[0]  # 获取视频对应的cid号
print('该视频的cid是:', cid)

根据cid号,拼出xml接口地址,并再次发送请求:

danmu_url = 'http://comment.bilibili.com/{}.xml'.format(cid)  # 弹幕地址
print('弹幕地址是:', danmu_url)
r2 = requests.get(danmu_url)

解析xml页面:<d>标签的文本内容为弹幕,<d>标签内p属性值(按逗号分隔)的第四个字段是时间戳:

soup = BS(html2, 'xml')
danmu_list = soup.find_all('d')
print('共爬取到{}条弹幕'.format(len(danmu_list)))
video_url_list = []  # 视频地址
danmu_url_list = []  # 弹幕地址
time_list = []  # 弹幕时间
text_list = []  # 弹幕内容
for d in danmu_list:
    data_split = d['p'].split(',')  # 按逗号分隔
    temp_time = time.localtime(int(data_split[4]))  # 转换时间格式
    danmu_time = time.strftime("%Y-%m-%d %H:%M:%S", temp_time)
    video_url_list.append(v_url)
    danmu_url_list.append(danmu_url)
    time_list.append(danmu_time)
    text_list.append(d.text)
    print('{}:{}'.format(danmu_time, d.text))

保存时应注意,为了避免多次写入csv标题头,像这样:
重复header.png

这里,我写了一个处理逻辑,大家看注释,应该能明白:

if os.path.exists(v_result_file):  # 如果文件存在,不需写入字段标题
    header = None
else:  # 如果文件不存在,说明是第一次新建文件,需写入字段标题
    header = ['视频地址', '弹幕地址', '弹幕时间', '弹幕内容']
df.to_csv(v_result_file, encoding='utf_8_sig', mode='a+', index=False, header=header)  # 数据保存到csv文件

需要注意的是,encoding参数赋值为utf_8_sig,不然csv内容可能会产生乱码,避免踩坑!

三、代码讲解-情感分析部分

3.1 整体思路

针对情感分析需求,我主要做了三个步骤的分析工作:

用SnowNLP给弹幕内容打标:积极、消极,并统计占比情况
用jieba.analyse分词,并统计top10高频词
用WordCloud绘制词云图
首先,导入csv数据,并做数据清洗工作,不再赘述。

下面,正式进入情感分析代码部分:

3.2 情感分析打标

情感分析计算得分值、分类打标,并画出饼图。

# 情感判定
for comment in v_cmt_list:
    tag = ''
    sentiments_score = SnowNLP(comment).sentiments
    if sentiments_score < 0.5:
        tag = '消极'
        neg_count += 1
    elif sentiments_score > 0.5:
        tag = '积极'
        pos_count += 1
    else:
        tag = '中性'
        mid_count += 1
    score_list.append(sentiments_score)  # 得分值
    tag_list.append(tag)  # 判定结果
df['情感得分'] = score_list
df['分析结果'] = tag_list

这里,我设定情感得分值小于0.5为消极,大于0.5为积极,等于0.5为中性。(这个分界线,没有统一标准,根据数据分布情况和分析经验自己设定分界线即可)

情感判定结果:
情感分析结果.png

画出占比饼图的代码:

grp = df['分析结果'].value_counts()
print('正负面评论统计:')
print(grp)
grp.plot.pie(y='分析结果', autopct='%.2f%%')  # 画饼图
plt.title('刘畊宏弹幕_情感分布占比图')
plt.savefig('刘畊宏弹幕_情感分布占比图.png')  # 保存图片

饼图结果:
刘畊宏弹幕_情感分布占比图.png

从占比结果来看,大部分网友还是很认可刘畊宏的。

3.3 统计top10高频词

代码如下:

# 2、用jieba统计弹幕中的top10高频词
keywords_top10 = jieba.analyse.extract_tags(v_cmt_str, withWeight=True, topK=10)
print('top10关键词及权重:')
pprint(keywords_top10)

这里需要注意,在调用jieba.analyse.extract_tags函数时,要导入的是import jieba.analyse 而不是 import jieba

统计结果为:(分为10组关键词及其权重,权重按倒序排序)
TOP10高频词.png

3.4 绘制词云图

注意别踩坑:

想要通过原始图片的形状生成词云图,原始图片一定要白色背景(实在没有的话,PS修图修一个吧),否则生成的是满屏词云!!

try:
    stopwords = v_stopwords  # 停用词
    backgroud_Image = np.array(Image.open('刘畊宏_背景图.png'))  # 读取背景图片
    wc = WordCloud(
        background_color="white",  # 背景颜色
        width=1500,  # 图宽
        height=1200,  # 图高
        max_words=1000,  # 最多字数
        font_path='/System/Library/Fonts/SimHei.ttf',  # 字体文件路径,根据实际情况(Mac)替换
        # font_path="C:\Windows\Fonts\simhei.ttf",  # 字体文件路径,根据实际情况(Windows)替换
        stopwords=stopwords,  # 停用词
        mask=backgroud_Image,  # 背景图片
    )
    jieba_text = " ".join(jieba.lcut(v_str))  # jieba分词
    wc.generate_from_text(jieba_text)  # 生成词云图
    wc.to_file(v_outfile)  # 保存图片文件
    print('词云文件保存成功:{}'.format(v_outfile))
except Exception as e:
    print('make_wordcloud except: {}'.format(str(e)))

得到的词云图,和原始背景图对比一下:
对比图.png

3.5 情感分析结论

  1. 打标结果中,积极和中性评价占约72%,远远大于消极评价!
  2. top10关键词统计结果中,"哈哈哈"、"打卡"、"加油"、"666"等好评词汇占据多数!
  3. 词云图中,"哈哈"、"打卡"、"厉害"、"加油"等好评词看上去更大(词频高)!
    综上所述,经分析"刘畊宏"相关弹幕,得出结论:

众多网友对刘畊宏的评价都很高,毕竟不但带领全面健身这样正能量的事,还是杰伦的好兄弟,谁能不爱呢!

给他点赞!!

四、同步演示视频

演示代码执行过程:
https://www.zhihu.com/zvideo/1506383713600036864


by 马哥python说

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容