【Spark】Spark的Shuffle机制

MapReduce中的Shuffle

在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。
Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。
下图描述了MapReduce算法的整个流程,其中shuffle phase是介于Map phase和Reduce phase之间:


在Hadoop, 在mapper端每次当memory buffer中的数据快满的时候, 先将memory中的数据, 按partition进行划分, 然后各自存成小文件, 这样当buffer不断的spill的时候, 就会产生大量的小文件。
所以Hadoop后面直到reduce之前做的所有的事情其实就是不断的merge, 基于文件的多路并归排序,在map端的将相同partition的merge到一起, 在reduce端, 把从mapper端copy来的数据文件进行merge, 以用于最终的reduce
多路归并排序, 达到两个目的。
merge, 把相同key的value都放到一个arraylist里面;sort, 最终的结果是按key排序的。
这个方案扩展性很好, 面对大数据也没有问题, 当然问题在效率, 毕竟需要多次进行基于文件的多路归并排序,多轮的和磁盘进行数据读写。


Spark的Shuffle机制

Spark中的Shuffle是把一组无规则的数据尽量转换成一组具有一定规则的数据。
Spark计算模型是在分布式的环境下计算的,这就不可能在单进程空间中容纳所有的计算数据来进行计算,这样数据就按照Key进行分区,分配成一块一块的小分区,打散分布在集群的各个进程的内存空间中,并不是所有计算算子都满足于按照一种方式分区进行计算。
当需要对数据进行排序存储时,就有了重新按照一定的规则对数据重新分区的必要,Shuffle就是包裹在各种需要重分区的算子之下的一个对数据进行重新组合的过程。在逻辑上还可以这样理解:由于重新分区需要知道分区规则,而分区规则按照数据的Key通过映射函数(Hash或者Range等)进行划分,由数据确定出Key的过程就是Map过程,同时Map过程也可以做数据处理,例如,在Join算法中有一个很经典的算法叫Map Side Join,就是确定数据该放到哪个分区的逻辑定义阶段。Shuffle将数据进行收集分配到指定Reduce分区,Reduce阶段根据函数对相应的分区做Reduce所需的函数处理。

Spark中Shuffle的流程

  • 首先每一个Mapper会根据Reducer的数量创建出相应的bucket,bucket的数量是M×R,其中M是Map的个数,R是Reduce的个数。
  • 其次Mapper产生的结果会根据设置的partition算法填充到每个bucket中去。这里的partition算法是可以自定义的,当然默认的算法是根据key哈希到不同的bucket中去。
  • 当Reducer启动时,它会根据自己task的id和所依赖的Mapper的id从远端或是本地的block manager中取得相应的bucket作为Reducer的输入进行处理。

这里的bucket是一个抽象概念,在实现中每个bucket可以对应一个文件,可以对应文件的一部分或是其他等。

转载请注明作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
Google搜索jasonding1354进入我的博客主页

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容