那些酷炫的深度学习网络图怎么画出来的?

看下面介绍的画神经网络结构的工具之前,

Amusi 先说一句:****PPT ****和 ****Visio ****永远滴神!

image

本文我们聊聊如何才能画出炫酷高大上的神经网络图,下面是常用的几种工具。

**1 **NN-SVG

这个工具可以非常方便的画出各种类型的图,是下面这位小哥哥开发的,来自于麻省理工学院弗兰克尔生物工程实验室, 该实验室开发可视化和机器学习工具用于分析生物数据。

image

github地址:https://github.com/zfrenchee

画图工具体验地址:http://alexlenail.me/NN-SVG/

可以绘制的图包括以节点形式展示的FCNN style,这个特别适合传统的全连接神经网络的绘制。

image

以平铺网络结构展示的LeNet style,用二维的方式,适合查看每一层featuremap的大小和通道数目。

image

以三维block形式展现的AlexNet style,可以更加真实地展示卷积过程中高维数据的尺度的变化,目前只支持卷积层和全连接层。

image

这个工具可以导出非常高清的SVG图,值得体验。

2 PlotNeuralNet

这个工具是萨尔大学计算机科学专业的一个学生开发的,一看就像计算机学院的嘛。

image

首先我们看看效果,其github链接如下,将近4000 star:

https://github.com/HarisIqbal88/PlotNeuralNet

看看人家这个fcn-8的可视化图,颜值奇高。

image

使用的门槛相对来说就高一些了,用LaTex语言编辑,所以可以发挥的空间就大了,你看下面这个softmax层,这就是会写代码的优势了。

image

其中的一部分代码是这样的,会写吗。

\pic[shift={(0,0,0)}] at (0,0,0) {Box={name=crp1,caption=SoftmaxLoss: E_\mathcal{S} ,%

fill={rgb:blue,1.5;red,3.5;green,3.5;white,5},opacity=0.5,height=20,width=7,depth=20}};

相似的工具还有:https://github.com/jettan/tikz_cnn

**3 **ConvNetDraw

ConvNetDraw是一个使用配置命令的CNN神经网络画图工具,开发者是香港的一位程序员,Cédric cbovar。

image

采用如下的语法直接配置网络,可以简单调整x,y,z等3个维度,github链接如下:

https://cbovar.github.io/ConvNetDraw/

image

使用方法如上图所示,只需输入模型结构中各层的参数配置。

image

挺好用的不过它目标分辨率太低了,放大之后不清晰,达不到印刷的需求。

4 Draw_Convnet

这一个工具名叫draw_convnet,由Borealis公司的员工Gavin Weiguang Ding提供。

image

简单直接,是纯用python代码画图的,

https://github.com/gwding/draw_convnet

看看画的图如下,核心工具是matplotlib,图不酷炫,但是好在规规矩矩,可以严格控制,论文用挺合适的。

image

类似的工具还有:https://github.com/yu4u/convnet-drawer

5 Netscope

下面要说的是这个,我最常用的,caffe的网络结构可视化工具,大名鼎鼎的netscope,由斯坦福AILab的Saumitro Dasgupta开发,找不到照片就不放了,地址如下:

https://github.com/ethereon/netscope

image
image

左边放配置文件,右边出图,非常方便进行网络参数的调整和可视化。这种方式好就好在各个网络层之间的连接非常的方便。

其他

再分享一个有意思的,不是画什么正经图,但是把权重都画出来了。

http://scs.ryerson.ca/~aharley/vis/conv/

image
image

看了这么多,有人已经在偷偷笑了,上PPT呀,想要什么有什么,想怎么画就怎么画。

image

不过妹子呢?****怎么不来开发一个粉色系的可视化工具呢?****类似于这样的

image

Amusi:再强调一下****,画绝大多数网络用 ****PPT 或 ****Visio ****就够了

image
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349