在Object-C中调方法在底层就是调objc_msgSend
进行发送消息,消息发送时先在Class的cache中查找imp,这一步为快速查找,在cache中没有找到,就会在bits中查找,这一步为慢速查找。
1、慢速查找方法定位
在结尾找到了MethodTableLookup
,在搜索一下MethodTableLookup
的定义:
这里只需要看bl _lookUpImpOrForward
,这个跳转语句,这里是跳到_lookUpImpOrForward
这个方法了,全局搜一下:
基本上都是跳转和调用,没看到调用。可以去掉下划线在搜索一下:
这就是由汇编调到C方法了,终于不用翻译汇编了。
2、慢速查找流程
先来浏览一下lookUpImpOrForward
:
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
IMP imp = nil;
Class curClass;
runtimeLock.assertUnlocked();
if (slowpath(!cls->isInitialized())) {
// The first message sent to a class is often +new or +alloc, or +self
// which goes through objc_opt_* or various optimized entry points.
//
// However, the class isn't realized/initialized yet at this point,
// and the optimized entry points fall down through objc_msgSend,
// which ends up here.
//
// We really want to avoid caching these, as it can cause IMP caches
// to be made with a single entry forever.
//
// Note that this check is racy as several threads might try to
// message a given class for the first time at the same time,
// in which case we might cache anyway.
behavior |= LOOKUP_NOCACHE;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.lock();
// We don't want people to be able to craft a binary blob that looks like
// a class but really isn't one and do a CFI attack.
//
// To make these harder we want to make sure this is a class that was
// either built into the binary or legitimately registered through
// objc_duplicateClass, objc_initializeClassPair or objc_allocateClassPair.
checkIsKnownClass(cls);
cls = realizeAndInitializeIfNeeded_locked(inst, cls, behavior & LOOKUP_INITIALIZE);
// runtimeLock may have been dropped but is now locked again
runtimeLock.assertLocked();
curClass = cls;
// The code used to lookup the class's cache again right after
// we take the lock but for the vast majority of the cases
// evidence shows this is a miss most of the time, hence a time loss.
//
// The only codepath calling into this without having performed some
// kind of cache lookup is class_getInstanceMethod().
for (unsigned attempts = unreasonableClassCount();;) {
if (curClass->cache.isConstantOptimizedCache(/* strict */true)) {
#if CONFIG_USE_PREOPT_CACHES
imp = cache_getImp(curClass, sel);
if (imp) goto done_unlock;
curClass = curClass->cache.preoptFallbackClass();
#endif
} else {
// curClass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp(false);
goto done;
}
if (slowpath((curClass = curClass->getSuperclass()) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
}
// Halt if there is a cycle in the superclass chain.
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
// No implementation found. Try method resolver once.
if (slowpath(behavior & LOOKUP_RESOLVER)) {
behavior ^= LOOKUP_RESOLVER;
return resolveMethod_locked(inst, sel, cls, behavior);
}
done:
if (fastpath((behavior & LOOKUP_NOCACHE) == 0)) {
#if CONFIG_USE_PREOPT_CACHES
while (cls->cache.isConstantOptimizedCache(/* strict */true)) {
cls = cls->cache.preoptFallbackClass();
}
#endif
log_and_fill_cache(cls, imp, sel, inst, curClass);
}
done_unlock:
runtimeLock.unlock();
if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
return nil;
}
return imp;
}
代码的行数并不是很多,来逐行分析:
1、const IMP forward_imp = (IMP)_objc_msgForward_impcache;
,初始化一个imp
给 forward_imp
变量,看看_objc_msgForward_impcache
是怎么定义的:
又跳到汇编里面来了,__objc_msgForward_impcache
跳转到 __objc_msgForward
,在__objc_msgForward里面x17变量调用__objc_forward_handler
方法操作,看看__objc_forward_handler
是怎么操作的:
看到这里熟不熟悉,如果不熟悉看下面的:
这个变量就是在经历慢速查找、消息动态决议等之后条用的方法。这里我看还可以看到,对底层而言是不存在类方法还是实例方法的,+
、-
的判断是根据是不是元类来认为判断的。
2、cls = realizeAndInitializeIfNeeded_locked(inst, cls, behavior & LOOKUP_INITIALIZE);
初始化当前的类,来看看怎么初始化的,一步步跟进来找到OC的初始化过程:
static Class realizeClassWithoutSwift(Class cls, Class previously)
{
runtimeLock.assertLocked();
class_rw_t *rw;
Class supercls;
Class metacls;
if (!cls) return nil;
if (cls->isRealized()) {
validateAlreadyRealizedClass(cls);
return cls;
}
ASSERT(cls == remapClass(cls));
// fixme verify class is not in an un-dlopened part of the shared cache?
auto ro = (const class_ro_t *)cls->data();
auto isMeta = ro->flags & RO_META;
if (ro->flags & RO_FUTURE) {
// This was a future class. rw data is already allocated.
rw = cls->data();
ro = cls->data()->ro();
ASSERT(!isMeta);
cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else {
// Normal class. Allocate writeable class data.
rw = objc::zalloc<class_rw_t>();
rw->set_ro(ro);
rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
cls->setData(rw);
}
cls->cache.initializeToEmptyOrPreoptimizedInDisguise();
#if FAST_CACHE_META
if (isMeta) cls->cache.setBit(FAST_CACHE_META);
#endif
// Choose an index for this class.
// Sets cls->instancesRequireRawIsa if indexes no more indexes are available
cls->chooseClassArrayIndex();
if (PrintConnecting) {
_objc_inform("CLASS: realizing class '%s'%s %p %p #%u %s%s",
cls->nameForLogging(), isMeta ? " (meta)" : "",
(void*)cls, ro, cls->classArrayIndex(),
cls->isSwiftStable() ? "(swift)" : "",
cls->isSwiftLegacy() ? "(pre-stable swift)" : "");
}
// Realize superclass and metaclass, if they aren't already.
// This needs to be done after RW_REALIZED is set above, for root classes.
// This needs to be done after class index is chosen, for root metaclasses.
// This assumes that none of those classes have Swift contents,
// or that Swift's initializers have already been called.
// fixme that assumption will be wrong if we add support
// for ObjC subclasses of Swift classes.
supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil);
metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
#if SUPPORT_NONPOINTER_ISA
if (isMeta) {
// Metaclasses do not need any features from non pointer ISA
// This allows for a faspath for classes in objc_retain/objc_release.
cls->setInstancesRequireRawIsa();
} else {
// Disable non-pointer isa for some classes and/or platforms.
// Set instancesRequireRawIsa.
bool instancesRequireRawIsa = cls->instancesRequireRawIsa();
bool rawIsaIsInherited = false;
static bool hackedDispatch = false;
if (DisableNonpointerIsa) {
// Non-pointer isa disabled by environment or app SDK version
instancesRequireRawIsa = true;
}
else if (!hackedDispatch && 0 == strcmp(ro->getName(), "OS_object"))
{
// hack for libdispatch et al - isa also acts as vtable pointer
hackedDispatch = true;
instancesRequireRawIsa = true;
}
else if (supercls && supercls->getSuperclass() &&
supercls->instancesRequireRawIsa())
{
// This is also propagated by addSubclass()
// but nonpointer isa setup needs it earlier.
// Special case: instancesRequireRawIsa does not propagate
// from root class to root metaclass
instancesRequireRawIsa = true;
rawIsaIsInherited = true;
}
if (instancesRequireRawIsa) {
cls->setInstancesRequireRawIsaRecursively(rawIsaIsInherited);
}
}
// SUPPORT_NONPOINTER_ISA
#endif
// Update superclass and metaclass in case of remapping
cls->setSuperclass(supercls);
cls->initClassIsa(metacls);
// Reconcile instance variable offsets / layout.
// This may reallocate class_ro_t, updating our ro variable.
if (supercls && !isMeta) reconcileInstanceVariables(cls, supercls, ro);
// Set fastInstanceSize if it wasn't set already.
cls->setInstanceSize(ro->instanceSize);
// Copy some flags from ro to rw
if (ro->flags & RO_HAS_CXX_STRUCTORS) {
cls->setHasCxxDtor();
if (! (ro->flags & RO_HAS_CXX_DTOR_ONLY)) {
cls->setHasCxxCtor();
}
}
// Propagate the associated objects forbidden flag from ro or from
// the superclass.
if ((ro->flags & RO_FORBIDS_ASSOCIATED_OBJECTS) ||
(supercls && supercls->forbidsAssociatedObjects()))
{
rw->flags |= RW_FORBIDS_ASSOCIATED_OBJECTS;
}
// Connect this class to its superclass's subclass lists
if (supercls) {
addSubclass(supercls, cls);
} else {
addRootClass(cls);
}
// Attach categories
methodizeClass(cls, previously);
return cls;
}
这个看起来有点复杂,简化一下流程,具体看注释:
static Class realizeClassWithoutSwift(Class cls, Class previously)
{
class_rw_t *rw;
Class supercls;
Class metacls;
// 设置class的ro和rw
auto ro = (const class_ro_t *)cls->data();
auto isMeta = ro->flags & RO_META;
if (ro->flags & RO_FUTURE) {
// This was a future class. rw data is already allocated.
rw = cls->data();
ro = cls->data()->ro();
cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else {
rw = objc::zalloc<class_rw_t>();
rw->set_ro(ro);
rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
cls->setData(rw);
}
// 递归初始化父类和元类
supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil);
metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
// 设置父类和元类
cls->setSuperclass(supercls);
cls->initClassIsa(metacls);
//设置子类
if (supercls) {
addSubclass(supercls, cls);
} else {
addRootClass(cls);
}
// Attach categories
methodizeClass(cls, previously);
return cls;
}
可以看出初始化类的作用就是:
(1)设置class的ro和rw
(2)递归初始化父类和元类
(3)设置父类和元类
(4)设置子类
经过以上4步,类的基本结构就已经完成了。另外,我们也可以看到一个类既有父类又有子类,可以说他就是双向链表结构。
3、接下来就是一个for结构的死循环:
3.1 第一次进来的时候现在又在自己的缓存中找一遍:
imp = cache_getImp(curClass, sel);
if (imp) goto done_unlock;
看苹果的注释:
curClass = curClass->cache.preoptFallbackClass();
执行这一行码之后curClass->cache.isConstantOptimizedCache(/* strict */true)
这个判断条件就为false了,下一次进来就会走到else里面了。
3.2 Method meth = getMethodNoSuper_nolock(curClass, sel);
从当前类里面找,跟一下其实现方式:
template<class getNameFunc>
ALWAYS_INLINE static method_t *
findMethodInSortedMethodList(SEL key, const method_list_t *list, const getNameFunc &getName)
{
ASSERT(list);
auto first = list->begin();
auto base = first;
decltype(first) probe;
uintptr_t keyValue = (uintptr_t)key;
uint32_t count;
for (count = list->count; count != 0; count >>= 1) {
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)getName(probe);
if (keyValue == probeValue) {
// `probe` is a match.
// Rewind looking for the *first* occurrence of this value.
// This is required for correct category overrides.
while (probe > first && keyValue == (uintptr_t)getName((probe - 1))) {
probe--;
}
return &*probe;
}
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
这个方法介绍两点:
(1)这个查找方式是二分查找
(2)会优先查找category
的方法
如果在当前类里面找到就会走到done
:
log_and_fill_cache(cls, imp, sel, inst, curClass);
static void
log_and_fill_cache(Class cls, IMP imp, SEL sel, id receiver, Class implementer)
{
#if SUPPORT_MESSAGE_LOGGING
if (slowpath(objcMsgLogEnabled && implementer)) {
bool cacheIt = logMessageSend(implementer->isMetaClass(),
cls->nameForLogging(),
implementer->nameForLogging(),
sel);
if (!cacheIt) return;
}
#endif
cls->cache.insert(sel, imp, receiver);
}
然后就走到cache.insert方法,这个方法在一篇中已经介绍过,就形成了一个完整的闭环。
3.3 如果在当前类没有找到,就会走到:
if (slowpath((curClass = curClass->getSuperclass()) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
条件slowpath((curClass = curClass->getSuperclass()) == nil)
,有两个作用将curClass指向父类,判断父类是否为nil,如果父类为nil,将imp赋值为forward_imp,然后出循环,注意这里用的是break
,如果父类不为nil,就继续查找父类的cache。
3.4
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
查找父类的cache,如果找到imp == forward_imp
也是break
,如果不是goto done
,都不满足接着下一个循环,一直到slowpath((curClass = curClass->getSuperclass()) == nil)
这个条件满足跳出所有循环。
4
if (slowpath(behavior & LOOKUP_RESOLVER)) {
behavior ^= LOOKUP_RESOLVER;
return resolveMethod_locked(inst, sel, cls, behavior);
}
在for的死循环中凡是break的都会走到这里来,说明类自己以及父类都没有找到,最后会调resolveMethod_locked
动态方法决议来处理,这个过程下一篇来介绍。
- objc_msgSend流程总结: