数据结构——队列

简介

队列是是只允许在一端进行插入操作,而在另一端进行删除操作的线性表。

队列是一种先进先出的线性表,简称FIFO允许插入的以端称为队尾,允许删除的一端被称为队头。

入队

队列入队

出队

队列出队

队列的两种存储表示:

  • 顺序表示:与顺序栈相似,队列的顺序存储结构会用一组地址连续的存储单元依次存储对猎头到队列尾的元素,还分别有头指针和尾指针指向队列头和队列尾。

    • 顺序结构队列的初始化:①设置队列最大长度;②头尾指针为0;③插入新队尾元素,尾指针加一;④删除头元素时,头指针加一。
    • 队列假溢出:当队列的最大空间为6,而头指针为5,尾指针为6时,将不可再继续插入新的队尾元素,实际上队列的实际可用空间并未沾满,此为“假溢出”现象。
    • 假溢出的解决方案:循环队列,队空条件:头指针=尾指针;队满条件:(尾指针+1)%MAXQSIZE == 头指针。
  • 链式表示:用链表标识的队列简称为链队。

    • 链队的初始化:①构造一个只有头结点的控队,头尾指针相等,头结点的指针域为null。
    • 入队:为新队尾元素分配结点,将新结点插入队尾,修改队尾指针的值。
    • 出队:判断对是否为空,空则出错,否则取出队列的队头元素,修改头指针。

队列的应用

  • 用于管理多线程中的线程。
  • 用于实施排队系统。

队列的抽象接口

public interface Queue<E> {

    /**
     * 队列的容量
     * @return
     */
    int getSize();

    /**
     * 队列是否为空
     * @return
     */
    boolean isEmpty();

    /**
     * 向队列中添加元素
     * @param e
     */
    void enqueue(E e);

    /**
     * 向队列取出元素
     * @return
     */
    E dequeue();

    /**
     * 查看队列第一个元素
     * @return
     */
    E getFront();
}

数组实现队列

public class ArrayQueue<E> implements Queue<E> {

    private E[] data;

    private int size;

    public ArrayQueue(){
        this(10);
    }

    public ArrayQueue(int capacity){
        this.data = (E[]) new Object[capacity];
        this.size = 0;
    }

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * 获取队列的容量
     * @return
     */
    public int getCapacity(){
        return data.length;
    }

    @Override
    public void enqueue(E e) {
        addLast(e);
    }

    @Override
    public E dequeue() {
        return removeFirst();
    }

    @Override
    public E getFront() {
        return get(0);
    }

    /**
     * 获取指定索引位置的值
     * @param index
     * @return
     */
    public E get(int index){
        if(index < 0 || index >= size){
            throw new IllegalArgumentException("Get failed. index is illegal.");
        }
        return data[index];
    }

    /**
     * 数组尾部新增元素
     * @param e
     */
    private void addLast(E e){
        add(size, e);
    }

    /**
     * 在指定位置插入元素
     * @param index
     * @param e
     */
    private void add(int index, E e){
        if(index < 0 || index > size){
            throw new IllegalArgumentException("AddLast failed. require index >=0 and index <= size");
        }
        if(size == data.length){
            //扩容
            resize(2 * data.length);
        }

        for(int i = size - 1; i >= index; i --){
            data[i + 1] = data[i];
        }
        data[index] = e;
        size ++;
    }

    /**
     * 数组扩容
     * @param newCapacity
     */
    private void resize(int newCapacity){
        E[] newData = (E[])new Object[newCapacity];
        for (int i = 0; i < size; i++) {
            newData[i] = data[i];
        }
        data = newData;
    }

    /**
     * 删除数组中第一个元素
     * @return
     */
    public E removeFirst(){
        return remove(0);
    }

    /**
     * 删除栈数组中index位置的元素, 并返回删除的元素
     * @param index
     * @return
     */
    private E remove(int index){
        if(index < 0 || index >= size){
            throw new IllegalArgumentException("Remove failed. index is illegal.");
        }
        E ret = data[index];
        for (int i = index; i < size - 1; i++) {
            data[i] = data[i + 1];
        }
        size --;
        data[size] = null;
        if(size == data.length / 4 && data.length / 2 != 0){
            //当数组长度缩小为原数组的4分之一的时候才进行数组的缩容,
            //缩小为原数组的2分之一,预留空间,防止有数据添加导致扩容浪费性能
            resize(data.length / 2);
        }
        return ret;
    }

    @Override
    public String toString(){
        StringBuilder sb = new StringBuilder();
        sb.append("Queue: ");
        sb.append("front [");
        for (int i = 0; i < size; i++) {
            sb.append(data[i]);
            if(i != size - 1){
                sb.append(", ");
            }
        }
        sb.append("] tail");
        return sb.toString();
    }
}

循环队列

队列首位相接的顺序存储结构。


循环队列

通过这样的方法,我们成功避免了数据搬移操作。看起来不难理解在用数组实现的非循环队列中,队满的判断条件是 tail == n,队空的判断条件是 head == tail。那针对循环队列,如何判断队空和队满呢?
队列为空的判断条件仍然是 head == tail。但队列满的判断条件就稍微有点复杂了。


tail=3,head=4,n=8,所以总结一下规律就是:(3+1)%8=4。当队满时,(tail+1)%n=head,当队列满时,图中的 tail 指向的位置实际上是没有存储数据的。所以,循环队列会 浪费一个数组的存储空间。

基于数组实现

public class LoopQueue<E> implements Queue<E> {

    private E[] data;

    //队首
    private int front;

    //队尾
    private int tail;

    private int size;

    public LoopQueue(){
        this(10);
    }

    public LoopQueue(int capacity){
        //在该实现中front==tail表示队列为空,所以存储容量的时候要空一格
        this.data = (E[]) new Object[capacity + 1];
        this.front = 0;
        this.tail = 0;
        this.size = 0;
    }

    public int getCapacity(){
        return data.length - 1;
    }

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return front == tail;
    }

    @Override
    public void enqueue(E e) {
        if((tail + 1) % data.length == front){
            resize(getCapacity() * 2);
        }
        data[tail] = e;
        tail = (tail + 1) % data.length;
        size ++;
    }

    private void resize(int newCapacity){
        E[] newData = (E[])new Object[newCapacity + 1];
        for (int i = 0; i < size; i++) {
            newData[i] = data[(i + front) % data.length];
        }
        data = newData;
        front = 0;
        tail = size;
    }

    @Override
    public E dequeue() {
        if(isEmpty()){
            throw new IllegalArgumentException("Cannot dequeue from an empty queue.");
        }
        E ret = data[front];
        data[front] = null;
        front = (front + 1) % data.length;
        size --;
        if(size == getCapacity() / 4 && getCapacity() / 2 != 0){
            resize(getCapacity() / 2);
        }
        return ret;
    }

    @Override
    public E getFront() {
        if(isEmpty()){
            throw new IllegalArgumentException("Queue is Empty.");
        }
        return data[front];
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append(String.format("Queue:size=%d, capacity=%d\n",size,getCapacity()));
        sb.append("front [");
        for (int i = front; i != tail; i = (i + 1) % data.length) {
            sb.append(data[i]);
            if((i + 1) % data.length != tail){
                sb.append(", ");
            }
        }
        sb.append("] tail");
        return sb.toString();
    }
}

链表队列

public class LinkedListQueue<E> implements Queue<E> {

    private class Node<E>{
        public E e;

        public Node<E> next;

        public Node(E e){
            this.e = e;
        }

        @Override
        public String toString() {
            return e.toString();
        }
    }

    private Node<E> head, tail;

    private Integer size;

    public LinkedListQueue(){
        head = null;
        tail = null;
        size = 0;
    }

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    @Override
    public void enqueue(E e) {
        if(tail == null){
            head = tail = new Node<>(e);
        }else {
            tail = tail.next = new Node<>(e);
        }
        size ++;
    }

    @Override
    public E dequeue() {
        if(isEmpty()){
            throw new IllegalArgumentException("Cannot dequeue from an empty queue.");
        }
        Node<E> retNode = head;
        head = head.next;
        retNode.next = null;
        if(head == null){
            tail = null;
        }
        size --;
        return retNode.e;
    }

    @Override
    public E getFront() {
        if(isEmpty()){
            throw new IllegalArgumentException("Cannot dequeue from an empty queue.");
        }
        return head.e;
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("Queue: front ");
        Node<E> cur = head;
        while (cur != null){
            sb.append(cur + "->");
            cur = cur.next;
        }
        sb.append("NULL tail");
        return sb.toString();
    }
}

对比测试

public class Test {

    //测试使用queue运行opCount个enQueue和deQueue操作所需的时间,单位:秒
    private static double testQueue(Queue<Integer> queue,int opCount){
        long startTime = System.nanoTime();
        Random random = new Random();
        for (int i = 0; i < opCount; i++) {
            queue.enqueue(random.nextInt(Integer.MAX_VALUE));
        }
        for (int i = 0; i < opCount; i++) {
            queue.dequeue();
        }
        long endTime = System.nanoTime();

        return (endTime - startTime) / 1000000000.0;
    }

    public static void main(String[] args) {
        int opCount = 100000;
        ArrayQueue<Integer> arrayQueue = new ArrayQueue<Integer>();
        double time1 = testQueue(arrayQueue,opCount);
        System.out.println("ArrayQueue, time: "+time1+" s");

        LoopQueue<Integer> loopQueue = new LoopQueue<Integer>();
        double time2 = testQueue(loopQueue,opCount);
        System.out.println("LoopQueue, time: "+time2+" s");

        LinkedListQueue<Integer> linkedListQueue = new LinkedListQueue<Integer>();
        double time3 = testQueue(linkedListQueue,opCount);
        System.out.println("LinkedListQueue, time: "+time3+" s");
    }
}

可见链表队列和循环队列相差不大,而数组队列时间差距是将近200多倍。

应用

阻塞队列

阻塞队列在队列基础上增加了阻塞操作。在队列为空的时候,从队头取数据会被阻塞。因为此时还没有数据可取,直到队列中有了数据才能返回;如果队列已经满了,那么插入数据的操作就会被阻塞,直到队列中有空闲位置后再插入数据,然后再返回。

基于阻塞队列实现的“生产者 - 消费者模型”,可以有效地协调生产和消费的速度。当“生产者”生 产数据的速度过快,“消费者”来不及消费时,存储数据的队列很快就会满了。这个时候,生产者就阻塞等待,直到“消费者”消费了数据,“生产者”才会被唤醒继续“生产”。

而且不仅如此,基于阻塞队列,我可以通过协调“生产者”和“消费者”的个数,来提高数据的处理效率。比如前面的例子,我们可以多配置几个“消费者”,来应对一个“生产者”。

并发队列

线程安全的队列我们叫作并发队列。最简单直接的实现方式是直接在 enqueue()、dequeue() 方法 上加锁,但是锁粒度大并发度会比较低,同一时刻仅允许一个存或者取操作。实际上,基于数组的循环队列,利用 CAS 原子操作,可以实现非常高效的并发队列。这也是循环队列比链式队列应用 更加广泛的原因。

参考:
https://blog.csdn.net/weixin_39084521/article/details/89820114

https://www.cnblogs.com/smallzhen/p/14165352.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 224,535评论 6 522
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,106评论 3 402
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 171,668评论 0 366
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 60,863评论 1 300
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 69,874评论 6 399
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,362评论 1 314
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,748评论 3 428
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,717评论 0 279
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,249评论 1 324
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,280评论 3 345
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,408评论 1 354
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,020评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,727评论 3 337
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,191评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,320评论 1 275
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,946评论 3 381
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,473评论 2 365

推荐阅读更多精彩内容