姓名:雷欣岚;学号:21021210909;学院:电子工程学院
【嵌牛导读】
一种基于任务分解策略的发热待查辅助鉴别诊断系统,首次全面且系统地构建了发热待查潜在病因类别层次结构,基于类别层次结构实现了针对发热待查潜在病因进行辅助鉴别诊断的层次分类模型,并能够模拟临床医生的推理逻辑,逐层给出鉴别诊断意见,不仅鉴别范围更全面、系统,同时具有更高的鉴别准确度和更好的临床可解释性,由上向下的逐层推理模式也更加符合临床医生的临床实践习惯;本发明所利用的临床数据都是患者就诊早期极易获取的早期临床表现数据,因此在患者早期就诊阶段就能够基于有限信息给出极具临床价值和可信度的鉴别诊断意见;本发明为发热待查潜在病因的鉴别诊断提供了全面、系统、层次化的解决策略。
【嵌牛鼻子】
鉴别诊断、层次分类模型
【嵌牛提问】
读完本文,你理解了鉴别诊断系统吗
【嵌牛正文】
1.一种基于任务分解策略的发热待查辅助鉴别诊断系统,其特征在于,包括以下模块:(1)数据获取模块:实现发热待查辅助鉴别诊断系统与异构源数据库的连接;通过交互界面配置在异构源数据库内的目标临床信息的数据范围,以及患者唯一标识、就诊唯一标识,并完成对目标数据的扫描以及校验性数据的统计,建立目标数据采集的完整数据通路;(2)数据规整模块:建立数据规整策略,以患者最早被诊断为发热待查的电子病历记录事件为发热待查诊断锚点,往前纳入7个自然日以内的就诊病历记录,往后纳入下次就诊开始时间与本次就诊结束时间差小于等于24小时的所有就诊病历记录,作为一次就诊周期;下次就诊开始时间距离本次就诊结束时间大于24小时的就诊病历记录归为下一个就诊周期;基于数据规整策略对临床业务当中因患者多次门诊就诊与住院就诊产生的不定间隔的业务数据进行重新分割与整合,形成单个患者因单次发热就诊产生的最小数据分析单元;在最小数据分析单元时间范围内提取最早的就诊病历记录数据;(3)多模态数据预处理模块:针对指定类型的病历文本数据,利用正则表达式技术根据不同类型病历文本的结构特点分别采取位置导向模式和关键词导向模式对病历文本进行目标信息结构化提取;对不同采样频率、不同长度以及存在缺失值的多变量时序数据,进行时间窗口对齐与归一化处理;针对结构化数据,完成对分类变量与数值变量的异常值处理、缺失值填充、标准编码以及标准化;(4)发热待查潜在病因层次鉴别模块,包括:基于任务分解策略构建发热待查潜在病因类别层次结构,将复杂且样本分布不均衡的多分类问题转化为包含多个二分类和三分类任务的层次分类问题;建立发热待查潜在病因层次分类模型,将模型分类输出空间定义在发热待查潜在病因类别层次结构之上;在模型训练阶段,采取siblings策略对阳性与阴性训练样本进行划分,基于划分的多个训练样本集分别训练多个基分类器;在模型实际应用阶段,采取Top-Down算法对多个基分类器在上下层级间的分类结果进行后处理,修正单个基分类器的局部概率,给出符合发热待查潜在病因类别层次结构的一致概率,得到发热待查患者潜在病因的层次类别分类结果,基于层次类别分类结果给出层次化鉴别诊断意见。