2020-02-21

开始前,先看几个重要概念:

概率函数:把事件概率表示成关于事件变量的函数

概率分布函数:一个随机变量ξ取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量ξ的分布函数,简称分布函数,记作F(x),即F(x)=P(ξ

概率密度函数:

概率密度等于变量在一个区间(事件的取值范围)的总的概率除以该段区间的长度。

概率密度函数是一个描述随机变量在某个确定的取值点附近的可能性的函数。

概率分布函数与概率密度函数的关系:

连续型随机变量X的概率分布函数F(x),如果存在非负可积函数f(x),使得对任意实数x,有

f(x)为X的概率密度

高斯分布

通过概率密度函数来定义高斯分布:

高斯分布的概率密度函数是:

均值为μ,标准差为σ

高斯分布的概率分布函数是:

高斯分布标准差在概率密度分布的数据意义

高斯分布重要量的性质

密度函数关于平均值对称平均值是它的众数(statistical mode)以及中位数(median)函数曲线下68.268949%的面积在平均值左右的一个标准差范围内95.449974%的面积在平均值左右两个标准差2σ的范围内99.730020%的面积在平均值左右三个标准差3σ的范围其中第3-5条称为68-95-99.7法则

举一个例子:

检查一些示例数据:

女性体重的平均值= 127.8

标准偏差(SD)= 15.5

一个标准差的范围

两个标准差的范围

如何检查你的数据是不是高斯分布

· 看直方图! 是不是看起来像钟形?

· 计算描述性汇总度量 - 平均值,中位数和模式是否相似?

· 2/3的观察是否位于平均值的±标准差1内? 95%的观察值是否在平均值的±2标准差范围内?

中心极限定理

正态分布有一个很重要的性质:在特定条件下,大量统计独立的随机变量的和的分布趋于正态分布,这就是中心极限定理。中心极限定理的重要意义在于,依据这一定理的结论,其它概率分布能够用正态分布作为近似。

高斯分布可以从二项式(或泊松)推导出假设:

p不接近1或者0时,n非常大

我们有一个连续变量而不是一个离散变量

考虑扔一次硬币10,000次。

p(头)= 0.5,N = 10,000

对于二项分布:

平均数为μ = np=5000,标准差为σ = [np(1 p)] 1/2=50。

此二项分布的概率在μ±1范围内:

高斯分布均值±一个标准差的概率积分:

高斯分布线性组合的重要性质

转载自:https://baijiahao.baidu.com/s?id=1621087027738177317&wfr=spider&for=pc
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容