文章作者:Tyan
博客:noahsnail.com | CSDN | 简书
1. Description
2. Solution
解析:Version 1,根据矩阵对角线元素的规律,行坐标与列坐标和相等的元素属于同一对角线,由于对角线从左下到右上,因此应该同一对角线的元素应该按列坐标的顺序排列,将所有元素按(i+j, j, nums[i][j])
保存,并按照(i+j,j)
进行排序即可。Version 2,每一条对角线上的数据保存到一个列表中,列表的索引为行坐标与列坐标的和,由于每一条对角线的元素是按照行顺序保存的,因此合并时应将顺序反转。Version 3把问题看做是一个树的遍历问题(广度优先搜索),每个节点只关心其下边的点及其右侧的点,下边的点只有第一行才有,右侧的点每个点都有,否则会出现重复搜索,要对点是否存在进行判断,搜索顺序使用队列实现。
- Version 1
class Solution:
def findDiagonalOrder(self, nums: List[List[int]]) -> List[int]:
diagonals = []
for i in range(len(nums)):
for j in range(len(nums[i])):
diagonals.append((i+j, j, nums[i][j]))
diagonals.sort(key=lambda x: (x[0], x[1]))
result = [x[2] for x in diagonals]
return result
- Version 2
class Solution:
def findDiagonalOrder(self, nums: List[List[int]]) -> List[int]:
diagonals = []
for i in range(len(nums)):
for j in range(len(nums[i])):
if i + j == len(diagonals):
diagonals.append([])
diagonals[i+j].append(nums[i][j])
result = []
for diagonal in diagonals:
result += diagonal[::-1]
return result
- Version 3
class Solution:
def findDiagonalOrder(self, nums: List[List[int]]) -> List[int]:
result = []
queue = collections.deque([(0, 0)])
while queue:
i, j = queue.popleft()
result.append(nums[i][j])
if i < len(nums) - 1 and j == 0:
queue.append((i+1, j))
if j < len(nums[i]) - 1:
queue.append((i, j+1))
return result