第一篇是懒人模式...
学习内容:数据的描述性统计
一、集中趋势
1、众数
众数(Mode)是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。 修正定义:是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。用 M 表示。 理性理解:简单的说,就是一组数据中占比例最多的那个数。
2、中位数
中位数(又称中值,英语:Median),统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
中位数示意图:
3、分位数
分位数(Quantile),亦称分位点,是指将一个随机变量的概率分布范围分为几个等份的数值点,常用的有中位数(即二分位数)、四分位数、百分位数等。
4、平均数
平均数,统计学术语,是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
平均数分为三个大类,分别为算数平均数、加权平均数、几何平均数
算数平均数
又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。它主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。
算术平均数是加权平均数的一种特殊形式(特殊在各项的权重相等)。在实际问题中,当各项权重不相等时,计算平均数时就要采用加权平均数;当各项权相等时,计算平均数就要采用算术平均数。
加权平均数
加权平均值即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。加权平均值的大小不仅取决于总体中各单位的数值(变量值)的大小,而且取决于各数值出现的次数(频数),由于各数值出现的次数对其在平均数中的影响起着权衡轻重的作用,因此叫做权数。
因为加权平均值是根据权数的不同进行的平均数的计算,所以又叫加权平均数。在日常生活中,人们常常把“权数”理解为事物所占的“权重”,所以在本词条中,我们不对这两个词加以区别。
几何平均数
几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。根据所拿握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。
二、数值型数据
1、方差
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差是衡量源数据和期望值相差的度量值。
方差的概念与计算公式,例如 两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式 [1] 。 称为标准差或均方差,方差描述波动程度。
2、标准差
标准差(Standard Deviation) ,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
3、极差
极差又称范围误差或全距(Range),以R表示,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。
它是标志值变动的最大范围,它是测定标志变动的最简单的指标。移动极差(Moving Range)是其中的一种。极差不能用作比较,单位不同 ,方差能用作比较, 因为都是个比率。
极差的计算公式:
4、平均差
平均差(Mean Deviation)是表示各个变量值之间差异程度的数值之一。指各个变量值同平均数的离差绝对值的算术平均数。
平均差异大,表明各标志值与算术平均数的差异程度越大,该算术平均数的代表性就越小;平均差越小,表明各标志值与算术平均数的差异程度越小,该算术平均数的代表性就越大。因离差和为零,离差的平均数不能将离差和除以离差的个数求得,而必须将离差取绝对数来消除正负号。平均差是反应各标志值与算术平均数之间的平均差异。
5、顺序数据(四分位差)
四分位差(quartile deviation),它是上四分位数(Q3,即位于75%)与下四分位数(Q1,即位于25%)的差。
计算公式为:Q = Q3-Q1
四分位差反映了中间50%数据的离散程度,其数值越小,说明中间的数据越集中;其数值越大,说明中间的数据越分散。四分位差不受极值的影响。此外,由于中位数处于数据的中间位置,因此,四分位差的大小在一定程度上也说明了中位数对一组数据的代表程度。四分位差主要用于测度顺序数据的离散程度。对于数值型数据也可以计算四分位差,但不适合分类数据。
四分位数是将一组数据由小到大(或由大到小)排序后,用3个点将全部数据分为4等份,与这3个点位置上相对应的数值称为四分位数,分别记为Q1(第一四分位数),说明数据中有25%的数据小于或等于Q1,Q2(第二四分位数,即中位数)说明数据中有50%的数据小于或等于Q2、Q3(第三四分位数)说明数据中有75%的数据小于或等于Q3。其中,Q3到Q1之间的距离的差的一半又称为分半四分位差,记为(Q3-Q1)/2。
6、分类数据(异众比率)
异众比率(variation ratio)是统计学名词,是统计学当中研究现象离中趋势的指标之一。异众比率指的是总体中非众数次数与总体全部次数之比。换句话说,异众比率指非众数组的频数占总频数的比例。
计算公式
7、相对立三数据(离散系数)
离散系数又称变异系数,是统计学当中的常用统计指标。离散系数是测度数据离散程度的相对统计 量,主要是用于比较不同样本数据的离散程度。离散系数大,说明数据的离散程度也大;离散系数小,说明数据的离散程度也小。
三、分布的形状
1、偏态系数
偏态系数又称偏差系数,说明随机系列分配不对称程度的统计参数,用Cs表示。和Cv只能反映频率密度分配曲线的平均情况和离散程度,而不能反映其对称(即偏态)情况,所以必须再引入一个参数,即偏差系数Cso。偏态系数绝对值越大,偏斜越严重。
2、峰态系数
峰态系数( coefficient of kurtosis)即“峰度”。设随机变量X的数学期望与方差统计学分别为EX和var(x)≠o,则称≤苌:毒筹£一3为x的峰度。它是反映X的密度函数曲线在众数附近的“峰”的尖峭程度的数字特征。正态分布的峰度为0,其他分布的峰度是以正态分布为标准描述该分布密度形状为陡峭或平坦的数字特征。
第一周的笔记,都是从百度百科copy的,真的是太懒了,后面的学习过程中要好好改正,每一周认真学习,这样才有效果和意义。