1.内存分配策略
对象 / 变量的内存分配 由程序自动 负责
共有3种:静态分配、栈式分配、 & 堆式分配,分别面向静态变量、局部变量 & 对象实例
-
具体介绍如下
memory_tenet.jpg
用一个实例讲解 内存分配
public class Sample {
// 该类的实例对象的成员变量s1、mSample1 & 指向对象存放在堆内存中
int s1 = 0;
Sample mSample1 = new Sample();
// 方法中的局部变量s2、mSample2存放在 栈内存
// 变量mSample2所指向的对象实例存放在 堆内存
public void method() {
int s2 = 0;
Sample mSample2 = new Sample();
}
}
// 变量mSample3的引用存放在栈内存中
// 变量mSample3所指向的对象实例存放在堆内存
// 该实例的成员变量s1、mSample1也存放在堆内存中
Sample mSample3 = new Sample();
2.内存释放策略
- 对象 / 变量的内存释放 由
Java
垃圾回收器(GC
) / 帧栈 负责 - 此处主要讲解对象分配(即堆式分配)的内存释放策略 =
Java
垃圾回收器(GC
) -
Java
垃圾回收器(GC
)的内存释放 = 垃圾回收算法,主要包括:
1,标记清除算法
2,复制算法
3,标记压缩算法
4,分代收集算法
-
具体介绍如下
memory.jpg
3.常见的内存问题&优化方案
-
常见的内存问题如下
1.内存泄漏
2.内存抖动
3.图片Bitmap相关
4.代码质量&数量
5.日常不正确使用
3.1内存泄漏
简介 :指 程序在申请内存后,当该内存不需再使用 但 却无法被释放 & 归还给 程序的现象
-
对应用程序的影响 :内存溢出
oom.jpg -
发生内存泄漏的本质原因
oom_reson.jpg -
常见内存泄漏原因
1.集合类
2.static关键字修饰的成员变量
3.非静态内部类/匿名类
4.资源对象使用后未关闭
3.2优化方案
1.集合类
-
内存泄漏原因
集合类添加元素后,仍引用着 集合元素对象,导致该集合元素对象不可被回收,从而 导致内存泄漏
实例演示
// 通过 循环申请Object 对象 & 将申请的对象逐个放入到集合List
List<Object> objectList = new ArrayList<>();
for (int i = 0; i < 10; i++) {
Object o = new Object();
objectList.add(o);
o = null;
}
// 虽释放了集合元素引用的本身:o=null)
// 但集合List 仍然引用该对象,故垃圾回收器GC 依然不可回收该对象
-
解决方案
集合类 添加集合元素对象 后,在使用后必须从集合中删除
// 释放objectList
objectList.clear();
objectList=null;
2.Static关键字修饰的成员变量
-
储备知识
被static关键字修饰的成员变量的生命周期 = 应用程序的生命周期
-
泄漏原因
若使被
Static
关键字修饰的成员变量 引用耗费资源过多的实例(如Context
),则容易出现该成员变量的生命周期 > 引用实例生命周期的情况,当引用实例需结束生命周期销毁时,会因静态变量的持有而无法被回收,从而出现内存泄露 -
实例讲解
public class ClassName { // 定义1个静态变量 private static Context mContext; //... // 引用的是Activity的context mContext = context; // 当Activity需销毁时,由于mContext = 静态 & 生命周期 = 应用程序的生命周期,故 Activity无法被回收,从而出现内存泄露 }
-
解决方案
1.尽量避免static成员变量引用资源耗费过多的实例(如Context),若需引用Context,则尽量使用Applicaiton的Context
2.使用弱引用(WeakReference)代替强引用持有实例
注:静态成员变量有个非常典型的例子 = 单例模式
-
储备知识
单例模式 由于其静态特性,其生命周期的长度 = 应用程序的生命周期
-
泄漏原因
若1个对象已不需再使用 而单例对象还持有该对象的引用,那么该对象将不能被正常回收 从而 导致内存泄漏
-
实例演示
// 创建单例时,需传入一个Context // 若传入的是Activity的Context,此时单例 则持有该Activity的引用 // 由于单例一直持有该Activity的引用(直到整个应用生命周期结束),即使该Activity退出,该Activity的内存也不会被回收 // 特别是一些庞大的Activity,此处非常容易导致OOM public class SingleInstanceClass { private static SingleInstanceClass instance; private Context mContext; private SingleInstanceClass(Context context) { this.mContext = context; // 传递的是Activity的context } public SingleInstanceClass getInstance(Context context) { if (instance == null) { instance = new SingleInstanceClass(context); } return instance; } }
-
解决方案
单例模式引用的对象的生命周期 = 应用的生命周期
public class SingleInstanceClass { private static SingleInstanceClass instance; private Context mContext; private SingleInstanceClass(Context context) { this.mContext = context; } public SingleInstanceClass getInstance(Context context) { if (instance == null) { instance = new SingleInstanceClass(context.getApplicationContext());// 传递的是Application 的context } return instance; } }
3.非静态内部类/匿名类
-
储备知识
非静态内部类/匿名类 默认持有外部类的引用,而静态内部类则不会
-
常见情况
3种,分别是:非静态内部类的实例 = 静态、多线程、消息传递机制(
Handler
)
第一种.非静态内部类的实例=静态
- 泄漏原因
若 非静态内部类所创建的实例 = 静态(其生命周期 = 应用的生命周期),会因 非静态内部类默认持有外部类的引用 而导致外部类无法释放,最终 造成内存泄露
- 实例演示
// 背景:
a. 在启动频繁的Activity中,为了避免重复创建相同的数据资源,会在Activity内部创建一个非静态内部类的单例
b. 每次启动Activity时都会使用该单例的数据
public class TestActivity extends AppCompatActivity {
// 非静态内部类的实例的引用
// 注:设置为静态
public static InnerClass innerClass = null;
@Override
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
// 保证非静态内部类的实例只有1个
if (innerClass == null)
innerClass = new InnerClass();
}
// 非静态内部类的定义
private class InnerClass {
//...
}
}
// 造成内存泄露的原因:
// a. 当TestActivity销毁时,因非静态内部类单例的引用(innerClass)的生命周期 = 应用App的生命周期、持有外部类TestActivity的引用
// b. 故 TestActivity无法被GC回收,从而导致内存泄漏
-
解决方案
1.将非静态内部类设置为:静态内部类(静态内部类默认不持有外部类的引用)
2.该内部类抽取出来封装成一个单例
3.尽量 避免 非静态内部类所创建的实例 = 静态
4.若需使用Context,建议使用Application的Context
第二种:多线程:AsyncTask,实现Runnable接口,继承Thread类
-
储备知识
多线程的使用方法= 非静态内部类/匿名类
-
泄漏原因
当 工作线程正在处理任务 & 外部类需销毁时, 由于 工作线程实例 持有外部类引用,将使得外部类无法被垃圾回收器(GC)回收,从而造成 内存泄露
实例演示(三者内存泄漏原理相同,这里以Thread类为例说明)
/**
* 方式1:新建Thread子类(内部类)
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// 通过创建的内部类 实现多线程
new MyThread().start();
}
// 自定义的Thread子类
private class MyThread extends Thread{
@Override
public void run() {
try {
Thread.sleep(5000);
Log.d(TAG, "执行了多线程");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
/**
* 方式2:匿名Thread内部类
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// 通过匿名内部类 实现多线程
new Thread() {
@Override
public void run() {
try {
Thread.sleep(5000);
Log.d(TAG, "执行了多线程");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}.start();
}
}
/**
* 分析:内存泄露原因
*/
// 工作线程Thread类属于非静态内部类 / 匿名内部类,运行时默认持有外部类的引用
// 当工作线程运行时,若外部类MainActivity需销毁
// 由于此时工作线程类实例持有外部类的引用,将使得外部类无法被垃圾回收器(GC)回收,从而造成 内存泄露
-
解决方案
从上面可看出,造成内存泄漏的原因有2个关键条件:
1.存在“工作线程实例 持有外部类引用”的引用关系
2.工作线程实例的生命周期>外部类的生命周期,即工作线程仍在运行而外部类销毁
解决方案的思路 = 使得上述任一条件不成立即可
// 共有2个解决方案:静态内部类 & 当外部类结束生命周期时,强制结束线程
// 具体描述如下
/**
* 解决方式1:静态内部类
* 原理:静态内部类 不默认持有外部类的引用,从而使得 “工作线程实例 持有 外部类引用” 的引用关系 不复存在
* 具体实现:将Thread的子类设置成 静态内部类
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
// 通过创建的内部类 实现多线程
new MyThread().start();
}
// 分析1:自定义Thread子类
// 设置为:静态内部类
private static class MyThread extends Thread{
@Override
public void run() {
try {
Thread.sleep(5000);
Log.d(TAG, "执行了多线程");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
/**
* 解决方案2:当外部类结束生命周期时,强制结束线程
* 原理:使得 工作线程实例的生命周期 与 外部类的生命周期 同步
* 具体实现:当 外部类(此处以Activity为例) 结束生命周期时(此时系统会调用onDestroy()),强制结束线程(调用stop())
*/
@Override
protected void onDestroy() {
super.onDestroy();
Thread.stop();
// 外部类Activity生命周期结束时,强制结束线程
}
第三种:消息传递机制:Handler
-
储备知识
主线程的Looper对象的生命周期 = 该应用程序的生命周期
实例演示
/**
* 方式1:新建Handler子类(内部类)
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
private Handler showhandler;
// 主线程创建时便自动创建Looper & 对应的MessageQueue
// 之后执行Loop()进入消息循环
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//1. 实例化自定义的Handler类对象->>分析1
//注:此处并无指定Looper,故自动绑定当前线程(主线程)的Looper、MessageQueue
showhandler = new FHandler();
// 2. 启动子线程1
new Thread() {
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 1;// 消息标识
msg.obj = "AA";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
// 3. 启动子线程2
new Thread() {
@Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2;// 消息标识
msg.obj = "BB";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
}
// 分析1:自定义Handler子类
class FHandler extends Handler {
// 通过复写handlerMessage() 从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 1:
Log.d(TAG, "收到线程1的消息");
break;
case 2:
Log.d(TAG, " 收到线程2的消息");
break;
}
}
}
}
/**
* 方式2:匿名Handler内部类
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
private Handler showhandler;
// 主线程创建时便自动创建Looper & 对应的MessageQueue
// 之后执行Loop()进入消息循环
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//1. 通过匿名内部类实例化的Handler类对象
//注:此处并无指定Looper,故自动绑定当前线程(主线程)的Looper、MessageQueue
showhandler = new Handler(){
// 通过复写handlerMessage()从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 1:
Log.d(TAG, "收到线程1的消息");
break;
case 2:
Log.d(TAG, " 收到线程2的消息");
break;
}
}
};
// 2. 启动子线程1
new Thread() {
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 1;// 消息标识
msg.obj = "AA";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
// 3. 启动子线程2
new Thread() {
@Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2;// 消息标识
msg.obj = "BB";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
}
}
-
泄漏原因
上述的Handler实例的消息队列有2个分别来自线程1,2的消息。在Handler消息队列还有未处理的消息/正在处理消息时,消息队列中的Message持有Handler实例的引用。由于
Handler
= 非静态内部类 / 匿名内部类(2种使用方式),故又默认持有外部类的引用(即MainActivity
实例),引用关系如下图
handler.webp.jpg在
Handler
消息队列 还有未处理的消息 / 正在处理消息时,此时若需销毁外部类MainActivity
,但由于上述引用关系,垃圾回收器(GC)
无法回收MainActivity
,从而造成内存泄漏 -
解决方案
从上面可看出,造成内存泄漏的原因有两个关键条件:
1,存在“未被处理 / 正处理的消息 ->
Handler
实例 -> 外部类” 的引用关系2,
Handler
的生命周期 > 外部类的生命周期解决方案的思路 = 使得上述任一条件不成立 即可
方案一:静态内部类+弱引用
public class MainActivity extends AppCompatActivity { public static final String TAG = "carson:"; private Handler showhandler; // 主线程创建时便自动创建Looper & 对应的MessageQueue // 之后执行Loop()进入消息循环 @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); //1. 实例化自定义的Handler类对象->>分析1 //注: // a. 此处并无指定Looper,故自动绑定当前线程(主线程)的Looper、MessageQueue; // b. 定义时需传入持有的Activity实例(弱引用) showhandler = new FHandler(this); // 2. 启动子线程1 new Thread() { @Override public void run() { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } // a. 定义要发送的消息 Message msg = Message.obtain(); msg.what = 1;// 消息标识 msg.obj = "AA";// 消息存放 // b. 传入主线程的Handler & 向其MessageQueue发送消息 showhandler.sendMessage(msg); } }.start(); // 3. 启动子线程2 new Thread() { @Override public void run() { try { Thread.sleep(5000); } catch (InterruptedException e) { e.printStackTrace(); } // a. 定义要发送的消息 Message msg = Message.obtain(); msg.what = 2;// 消息标识 msg.obj = "BB";// 消息存放 // b. 传入主线程的Handler & 向其MessageQueue发送消息 showhandler.sendMessage(msg); } }.start(); } // 分析1:自定义Handler子类 // 设置为:静态内部类 private static class FHandler extends Handler{ // 定义 弱引用实例 private WeakReference<Activity> reference; // 在构造方法中传入需持有的Activity实例 public FHandler(Activity activity) { // 使用WeakReference弱引用持有Activity实例 reference = new WeakReference<Activity>(activity); } // 通过复写handlerMessage() 从而确定更新UI的操作 @Override public void handleMessage(Message msg) { switch (msg.what) { case 1: Log.d(TAG, "收到线程1的消息"); break; case 2: Log.d(TAG, " 收到线程2的消息"); break; } } } }
方案二:当外部类结束生命周期时,清空Handler内消息队列
@Override protected void onDestroy() { super.onDestroy(); mHandler.removeCallbacksAndMessages(null); // 外部类Activity生命周期结束时,同时清空消息队列 & 结束Handler生命周期 }
使用建议
为了保证Handler
中消息队列中的所有消息都能被执行,此处推荐使用解决方案1解决内存泄露问题,即 静态内部类 + 弱引用的方式
4,资源对象使用后未关闭
-
泄漏原因
对于资源的使用(如 广播
BraodcastReceiver
、文件流File
、数据库游标Cursor
、图片资源Bitmap
等),若在Activity
销毁时无及时关闭 / 注销这些资源,则这些资源将不会被回收,从而造成内存泄漏
5,其他使用
- 除了上述4种常见情况,还有一些日常的使用会导致内存泄漏
-
主要包括:Context,Webview,Adapter等
other.jpg
3.3总结
3.4 内存泄漏分析工具
MAT(Memory Analysis Tools)
Heap Viewer
Allocation Tracker
Android Studio 的 Memory Monitor
LeakCanary
3.5 内存抖动
-
优化方案
尽量避免频繁创建大量临时的小对象