import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
sess = tf.InteractiveSession()
# w,b,可以复用,因此设为函数
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)
# 卷积层
# x输入,W卷积参数[5,5,1,32] 5*5的卷积核,1个深度,32个卷积核
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def max_pool_22(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(x,[-1,28,28,1])
# 卷积,relu,池化
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1 = max_pool_22(h_conv1)
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2 = max_pool_22(h_conv2) # 7×7×64
# 全连接层 1024
W_fc1 = weight_variable([7*7*64,1024]) #1d
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
W_fc2 = weight_variable([1024,10])
b_fc2 = weight_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#定义loss,optimizer
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step =tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
##
tf.global_variables_initializer().run()
correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1)) #高维度的
acuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #要用reduce_mean
for i in range(30000):
batch_x,batch_y = mnist.train.next_batch(50)
if i%1000==0:
train_accuracy = acuracy.eval({x:batch_x,y_:batch_y,keep_prob:1.0})
print("step %d,train_accuracy %g"%(i,train_accuracy))
train_step.run(feed_dict={x:batch_x,y_:batch_y,keep_prob:0.5})
#test
print acuracy.eval({x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0})
basic_convolution_mnist
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 定时器可以做什么用用于在确定的时间点或者经过确定的时间执行某种操作 deadline_timer和waitable...
- My code: 代码写得略微长了一点,但是整体逻辑应该还是很清楚的。 一开始做错了,从左往右扫描,思路是:如果碰...