Spark Core 性能调优之资源动态调度(Yarn模式下)

操作场景

        对于Spark应用来说,资源是影响Spark应用执行效率的一个重要因素。当一个长期运行的服务(比如JDBCServer),若分配给它多个Executor,可是却没有任何任务分配给它,而此时有其他的应用却资源紧张,这就造成了很大的资源浪费和资源不合理的调度。

        动态资源调度就是为了解决这种场景,根据当前应用任务的负载情况,实时的增减Executor个数,从而实现动态分配资源,使整个Spark系统更加健康。

操作步骤

1、需要先配置External shuffle service。详情见www.jianshu.com/writer#/notebooks/15701476/notes/16127461

2、在“spark-defaults.conf”中必须添加配置项“spark.dynamicAllocation.enabled”,并将该参数的值设置为“true”,表示开启动态资源调度功能。默认情况下此功能关闭。

动态资源调度配置参数:

注意事项

● 使用动态资源调度功能,必须配置External Shuffle Service。如果没有使用External Shuffle

Service,Executor被杀时会丢失shuffle文件。

● 如果通过spark.executor.instances或者--num-executors指定了Executor的个数,即使配置了动态资源调度功能,动态资源调度功能也不会生效。

● 当前动态资源分配功能开启后,不能完全避免task被分配到即将要移除的executor,但是一般情况下只会导致该task失败,只有同一个task失败4次(可通过spark.task.maxFailures配置)才会导致job失败,所以正常情况下基本不会因为task被分配到即将要移除的executor导致job失败,并且可以通过调大spark.task.maxFailures来减小问题发生的概率。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容