利用Python进行数据分析之Numpy学习笔记(三)

NumPy

本篇文章主要讲解NumPy的科学计算函数,虽然在写这篇文章的时候还是感觉这篇文章要比前两篇文章要好些一点,但是,NumPy的这些函数才是更加重要的,做数据分析不是创建ndarray,而是操作ndarray进行计算,获取更深层的数据。所有的函数并没有进行详细解释,需要用到直接在IPython中输入+“?”查看。

通用函数(Universal Functions)是一种对数据执行元素级运算的函数。

一元ufunc

函数 说明
abs、fabs 计算整数、浮点数或复数的绝对值。对于非复数值,可以使用更快的fabs
sqrt 计算各元素的平方根。相当于arr**0.5
square 计算各元素的平方。相当于arr**2
exp 计算各元素的指数$e^x$(这里简书居然不支持e的x次方)
log、log10、log2、log1p 分别为自然对数(底数为e)、底数为10的log、底数为2的log、底数为(1+x)
sign 计算各元素的正负号:1(正数)、0(零)、-1(负数)
ceil 计算各元素的ceiling值,即大于等于该值的最小整数
floor 计算各元素的floor值,即小于等于该值的最大整数
rint 将各元素值四舍五入到最接近的整数,保留dtype
modf 将数组的小数和整数部分以两个独立的数组的形式返回
isnan 返回一个表示“那些是NaN”的布尔型数组
isfinite、isinf 分别返回一个表示“哪些元素是有穷的(非inf,非NaN)”或“那些数据是无穷的”布尔型数组
cos、cosh、sin、sinh、tan、tanh 普通型和双曲线型三角函数
arccos、arccosh、arcsin、arcsinh、arctan、arctanh 反三角函数
logical_not 计算个元素not x的真值。相当于-arr

二元ufunc

函数 说明
add 将数组中对应的元素相加
subtract 从第一个数组中减去第二个数组中的元素
multiply 数组元素相乘
divide、floor_divide 除法或向下圆整除法(丢弃余数)
power 对第一个数组中的元素A,根据第二个数组中的相应元素B,计算$A^B$
maximun、fmax 元素级的最大值计算。fmax将忽略NaN
mininum、fmin 元素级的最小值计算。fmin将忽略NaN
mod 元素级的求模计算(除法的余数)
copysign 将第二个数组中的值得符号复制给第一个数组中的值
greater、greater_equal、less、less_equal、equal、not_equal 执行元素级的比较运算,最终产生布尔型数组。相当于中缀运算符>、>=、<、<=、==、!=
logical_and、logical_or、logical_xor 执行元素级的真值逻辑运算。相当于中缀运算符&、|、^

基本数据统计

函数 说明
sum 对数组中全部或某轴向的元素求和。零长度的数组的sum为0
mean 算数平均数。零长度的数组的mean为NaN
std、var 分别为标准差和方差,自由度可调(默认为n)
min、max 最大值和最小值
argmin、argmax 分别为最大和最小元素的索引
cumsum 所有元素的累计和,所产生的是一个中间结果的新数组,axis默认为None,此时产生一维的累计和数组,axis为其它值时,产生的数组将和原数组shape相同。
cumprod 所有元素的累计积,同上。

这些方法中布尔值会被强制转换为1(True)和0(False)。

问询函数

any用于测试数组中是否存在一个或多个True,而all则检查数组中是否都是True,主要用于布尔型数组,也可以用于非布尔型数组,所有非0元素将会被当成True。

将条件逻辑表述为数组运算。numpy.where(cond, xarr, yarr)函数是三元表达式x if condition else y的矢量化版本。np.where的第二个和第三个参数不必是数组,他们都可以是标量值。

排序

ndarray的sort是就地排序,而顶级方法np.sort会为原数组创建一个已经排序的副本。

线性代数

numpy.linalg中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的函数。他们跟MATLAB和R等语言所使用的是相同的行业标准级Fortran库。

函数 说明
diag 以一维数组的形式返回方阵的对角线(或非对角线)元素,或将一维数组转换为方阵(非对角线元素为0)。此函数在np下,并非在np.linalg下
dot 矩阵乘法
trace 计算对角线元素的和
det 计算矩阵行列式
eig 计算方阵的本征值和本征向量
inv 计算方阵的逆
pinv 计算矩阵的Moore-Penrose伪逆
qr 计算QR分解
svd 计算奇异值分解(SVD)
solve 解线性方程组Ax=b,其中A为一个方阵
lstsq 计算Ax=b的最小二乘解

随机数生成

numpy.random模块对python内置的random进行了补充,增加了一些用于高效生成多种概率分布的样本值的函数。

函数 说明
seed 确定随机数生成器的种子
permutation 返回一个序列的随机排列或返回一个随机排列的范围
shuffle 对一个序列就地随机排列
rand 产生均匀分布的样本值
randint 从给定的上下限范围内随机选取整数
randn 产生正态分布(平均值为0,标准差为1)的样本值,类似于MATLAB接口
binomial 产生二项分布的样本值
normal 产生正态(高斯)分布的样本值
beta 产生Beta分布的样本值
chisquare 产生卡方分布的样本值
gamma 产生Gamma分布的样本值
uniform 产生在[0,1)中均匀分布的样本值

官方文档给出的函数概览

Here is a list of some useful NumPy functions and methods names ordered in categories. See Routines for the full list.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357

推荐阅读更多精彩内容