描述:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例2:
输入: m = 7, n = 3
输出: 28
思路:
动规基础题,每个位置只可能从它的左侧和上侧运动过来。所以状态转移方程为:
d[m,n]=dp[m-1,n]+dp[m,n-1]
同时需要初始化第一行和第一列的方法数为1。
class Solution {
public int uniquePaths(int m, int n) {
int[][]dp = new int[m][n];
for(int i=0;i<m;i++){
dp[i][0]=1;
}
for(int j=0;j<n;j++){
dp[0][j]=1;
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j] = dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}