1 STL文件
它是标准的3D文件格式,一般3D打印机都是支持打印STL文件,关于STL文件的格式、以及相关介绍请参考百度百科:【stl格式】。当然了,我在代码的注释中也会进行相关解释。
1.1 解析准备
首先,在解析STL文件格式之前,我们需要进行构思。我们无非就是把STL文件中的三角形的顶点信息提取出来。因此我们的主要目标就是把所有点信息读取出来。
但是,3D模型的坐标位置很随机,大小也随机。而不同的模型所处的位置不同,为了能够让模型处于手机显示中心,我们必须对模型进行移动、放缩处理。使得任意大小、任意位置的模型都能在我们的GLSurfaceView中以“相同”的大小显示。
因此,我们不仅仅要读取顶点信息,而且还要获取模型的边界信息。我们想象成一个立方体,这个立方体刚好包裹住模型。即我们要读取x、y、z三个方向上的最大值最小值。
1.2 开始解析
首先,我们定义一个Model类,用于表示一个模型对象:
public class Model {
//三角面个数
private int facetCount;
//顶点坐标数组
private float[] verts;
//每个顶点对应的法向量数组
private float[] vnorms;
//每个三角面的属性信息
private short[] remarks;
//顶点数组转换而来的Buffer
private FloatBuffer vertBuffer;
//每个顶点对应的法向量转换而来的Buffer
private FloatBuffer vnormBuffer;
//以下分别保存所有点在x,y,z方向上的最大值、最小值
float maxX;
float minX;
float maxY;
float minY;
float maxZ;
float minZ;
//返回模型的中心点
//注意,下载的源码中,此函数修改修正如下
public Point getCentrePoint() {
float cx = minX + (maxX - minX) / 2;
float cy = minY + (maxY - minY) / 2;
float cz = minZ + (maxZ - minZ) / 2;
return new Point(cx, cy, cz);
}
//包裹模型的最大半径
public float getR() {
float dx = (maxX - minX);
float dy = (maxY - minY);
float dz = (maxZ - minZ);
float max = dx;
if (dy > max)
max = dy;
if (dz > max)
max = dz;
return max;
}
//设置顶点数组的同时,设置对应的Buffer
public void setVerts(float[] verts) {
this.verts = verts;
vertBuffer = Util.floatToBuffer(verts);
}
//设置顶点数组法向量的同时,设置对应的Buffer
public void setVnorms(float[] vnorms) {
this.vnorms = vnorms;
vnormBuffer = Util.floatToBuffer(vnorms);
}
//···
//其他属性对应的setter、getter函数
//···
}
接下来就是将stl文件转换成Model对象,我们定义一个STLReader类:
public class STLReader {
private StlLoadListener stlLoadListener;
public Model parserBinStlInSDCard(String path)
throws IOException {
File file = new File(path);
FileInputStream fis = new FileInputStream(file);
return parserBinStl(fis);
}
public Model parserBinStlInAssets(Context context, String fileName)
throws IOException {
InputStream is = context.getAssets().open(fileName);
return parserBinStl(is);
}
//解析二进制的Stl文件
public Model parserBinStl(InputStream in) throws IOException {
if (stlLoadListener != null)
stlLoadListener.onstart();
Model model = new Model();
//前面80字节是文件头,用于存贮文件名;
in.skip(80);
//紧接着用 4 个字节的整数来描述模型的三角面片个数
byte[] bytes = new byte[4];
in.read(bytes);// 读取三角面片个数
int facetCount = Util.byte4ToInt(bytes, 0);
model.setFacetCount(facetCount);
if (facetCount == 0) {
in.close();
return model;
}
// 每个三角面片占用固定的50个字节
byte[] facetBytes = new byte[50 * facetCount];
// 将所有的三角面片读取到字节数组
in.read(facetBytes);
//数据读取完毕后,可以把输入流关闭
in.close();
parseModel(model, facetBytes);
if (stlLoadListener != null)
stlLoadListener.onFinished();
return model;
}
/**
* 解析模型数据,包括顶点数据、法向量数据、所占空间范围等
*/
private void parseModel(Model model, byte[] facetBytes) {
int facetCount = model.getFacetCount();
/**
* 每个三角面片占用固定的50个字节,50字节当中:
* 三角片的法向量:(1个向量相当于一个点)*(3维/点)*(4字节浮点数/维)=12字节
* 三角片的三个点坐标:(3个点)*(3维/点)*(4字节浮点数/维)=36字节
* 最后2个字节用来描述三角面片的属性信息
* **/
// 保存所有顶点坐标信息,一个三角形3个顶点,一个顶点3个坐标轴
float[] verts = new float[facetCount * 3 * 3];
// 保存所有三角面对应的法向量位置,
// 一个三角面对应一个法向量,一个法向量有3个点
// 而绘制模型时,是针对需要每个顶点对应的法向量,因此存储长度需要*3
// 又同一个三角面的三个顶点的法向量是相同的,
// 因此后面写入法向量数据的时候,只需连续写入3个相同的法向量即可
float[] vnorms = new float[facetCount * 3 * 3];
//保存所有三角面的属性信息
short[] remarks = new short[facetCount];
int stlOffset = 0;
try {
for (int i = 0; i < facetCount; i++) {
if (stlLoadListener != null) {
stlLoadListener.onLoading(i, facetCount);
}
for (int j = 0; j < 4; j++) {
float x = Util.byte4ToFloat(facetBytes, stlOffset);
float y = Util.byte4ToFloat(facetBytes, stlOffset + 4);
float z = Util.byte4ToFloat(facetBytes, stlOffset + 8);
stlOffset += 12;
if (j == 0) {//法向量
vnorms[i * 9] = x;
vnorms[i * 9 + 1] = y;
vnorms[i * 9 + 2] = z;
vnorms[i * 9 + 3] = x;
vnorms[i * 9 + 4] = y;
vnorms[i * 9 + 5] = z;
vnorms[i * 9 + 6] = x;
vnorms[i * 9 + 7] = y;
vnorms[i * 9 + 8] = z;
} else {//三个顶点
verts[i * 9 + (j - 1) * 3] = x;
verts[i * 9 + (j - 1) * 3 + 1] = y;
verts[i * 9 + (j - 1) * 3 + 2] = z;
//记录模型中三个坐标轴方向的最大最小值
if (i == 0 && j == 1) {
model.minX = model.maxX = x;
model.minY = model.maxY = y;
model.minZ = model.maxZ = z;
} else {
model.minX = Math.min(model.minX, x);
model.minY = Math.min(model.minY, y);
model.minZ = Math.min(model.minZ, z);
model.maxX = Math.max(model.maxX, x);
model.maxY = Math.max(model.maxY, y);
model.maxZ = Math.max(model.maxZ, z);
}
}
}
short r = Util.byte2ToShort(facetBytes, stlOffset);
stlOffset = stlOffset + 2;
remarks[i] = r;
}
} catch (Exception e) {
if (stlLoadListener != null) {
stlLoadListener.onFailure(e);
} else {
e.printStackTrace();
}
}
//将读取的数据设置到Model对象中
model.setVerts(verts);
model.setVnorms(vnorms);
model.setRemarks(remarks);
}
public static interface StlLoadListener {
void onstart();
void onLoading(int cur, int total);
void onFinished();
void onFailure(Exception e);
}
}
注意到,我们需要频繁的将byte数组转为short、float类型,我们直接把这些函数装到一个工具类Util中:
public class Util {
public static FloatBuffer floatToBuffer(float[] a) {
//先初始化buffer,数组的长度*4,因为一个float占4个字节
ByteBuffer bb = ByteBuffer.allocateDirect(a.length * 4);
//数组排序用nativeOrder
bb.order(ByteOrder.nativeOrder());
FloatBuffer buffer = bb.asFloatBuffer();
buffer.put(a);
buffer.position(0);
return buffer;
}
public static int byte4ToInt(byte[] bytes, int offset) {
int b3 = bytes[offset + 3] & 0xFF;
int b2 = bytes[offset + 2] & 0xFF;
int b1 = bytes[offset + 1] & 0xFF;
int b0 = bytes[offset + 0] & 0xFF;
return (b3 << 24) | (b2 << 16) | (b1 << 8) | b0;
}
public static short byte2ToShort(byte[] bytes, int offset) {
int b1 = bytes[offset + 1] & 0xFF;
int b0 = bytes[offset + 0] & 0xFF;
return (short) ((b1 << 8) | b0);
}
public static float byte4ToFloat(byte[] bytes, int offset) {
return Float.intBitsToFloat(byte4ToInt(bytes, offset));
}
}
为了更好的表示三维坐标系下的一个点,我们定义Point类:
public class Point {
public float x;
public float y;
public float z;
public Point(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
}
2 编写Render
上一节我们只是拿数据而已,还没开始绘制,真正的大招现在才开始。因为我们目标是显示任意模型,因此,必须把模型移动到我们的“视野”中,才能看得到(当然了,如果图形本身就是在我们的视野中,那就不一定需要这样的操作了)。废话不多说,直接看源码:
public class GLRenderer implements GLSurfaceView.Renderer {
private Model model;
private Point mCenterPoint;
private Point eye = new Point(0, 0, -3);
private Point up = new Point(0, 1, 0);
private Point center = new Point(0, 0, 0);
private float mScalef = 1;
private float mDegree = 0;
public GLRenderer(Context context) {
try {
model = new STLReader().parserBinStlInAssets(context, "huba.stl");
} catch (IOException e) {
e.printStackTrace();
}
}
public void rotate(float degree) {
mDegree = degree;
}
@Override
public void onDrawFrame(GL10 gl) {
// 清除屏幕和深度缓存
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
gl.glLoadIdentity();// 重置当前的模型观察矩阵
//眼睛对着原点看
GLU.gluLookAt(gl, eye.x, eye.y, eye.z, center.x,
center.y, center.z, up.x, up.y, up.z);
//为了能有立体感觉,通过改变mDegree值,让模型不断旋转
gl.glRotatef(mDegree, 0, 1, 0);
//将模型放缩到View刚好装下
gl.glScalef(mScalef, mScalef, mScalef);
//把模型移动到原点
gl.glTranslatef(-mCenterPoint.x, -mCenterPoint.y,
-mCenterPoint.z);
//===================begin==============================//
//允许给每个顶点设置法向量
gl.glEnableClientState(GL10.GL_NORMAL_ARRAY);
// 允许设置顶点
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
// 允许设置颜色
//设置法向量数据源
gl.glNormalPointer(GL10.GL_FLOAT, 0, model.getVnormBuffer());
// 设置三角形顶点数据源
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, model.getVertBuffer());
// 绘制三角形
gl.glDrawArrays(GL10.GL_TRIANGLES, 0, model.getFacetCount() * 3);
// 取消顶点设置
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
//取消法向量设置
gl.glDisableClientState(GL10.GL_NORMAL_ARRAY);
//=====================end============================//
}
@Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
// 设置OpenGL场景的大小,(0,0)表示窗口内部视口的左下角,(width, height)指定了视口的大小
gl.glViewport(0, 0, width, height);
gl.glMatrixMode(GL10.GL_PROJECTION); // 设置投影矩阵
gl.glLoadIdentity(); // 设置矩阵为单位矩阵,相当于重置矩阵
GLU.gluPerspective(gl, 45.0f, ((float) width) / height, 1f, 100f);// 设置透视范围
//以下两句声明,以后所有的变换都是针对模型(即我们绘制的图形)
gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
}
@Override
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
gl.glEnable(GL10.GL_DEPTH_TEST); // 启用深度缓存
gl.glClearDepthf(1.0f); // 设置深度缓存值
gl.glDepthFunc(GL10.GL_LEQUAL); // 设置深度缓存比较函数
gl.glShadeModel(GL10.GL_SMOOTH);// 设置阴影模式GL_SMOOTH
float r = model.getR();
//r是半径,不是直径,因此用0.5/r可以算出放缩比例
mScalef = 0.5f / r;
mCenterPoint = model.getCentrePoint();
}
}
在MainActivity中不断调用旋转函数:
public class MainActivity extends AppCompatActivity {
private boolean supportsEs2;
private GLSurfaceView glView;
private float rotateDegreen = 0;
private GLRenderer glRenderer;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
checkSupported();
if (supportsEs2) {
glView = new GLSurfaceView(this);
glRenderer = new GLRenderer(this);
glView.setRenderer(glRenderer);
setContentView(glView);
} else {
setContentView(R.layout.activity_main);
Toast.makeText(this, "当前设备不支持OpenGL ES 2.0!", Toast.LENGTH_SHORT).show();
}
}
public void rotate(float degree) {
glRenderer.rotate(degree);
glView.invalidate();
}
private Handler handler = new Handler() {
@Override
public void handleMessage(Message msg) {
rotate(rotateDegreen);
}
};
@Override
protected void onResume() {
super.onResume();
if (glView != null) {
glView.onResume();
//不断改变rotateDegreen值,实现旋转
new Thread() {
@Override
public void run() {
while (true) {
try {
sleep(100);
rotateDegreen += 5;
handler.sendEmptyMessage(0x001);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}.start();
}
}
private void checkSupported() {
ActivityManager activityManager = (ActivityManager) getSystemService(ACTIVITY_SERVICE);
ConfigurationInfo configurationInfo = activityManager.getDeviceConfigurationInfo();
supportsEs2 = configurationInfo.reqGlEsVersion >= 0x2000;
boolean isEmulator = Build.VERSION.SDK_INT > Build.VERSION_CODES.ICE_CREAM_SANDWICH_MR1
&& (Build.FINGERPRINT.startsWith("generic")
|| Build.FINGERPRINT.startsWith("unknown")
|| Build.MODEL.contains("google_sdk")
|| Build.MODEL.contains("Emulator")
|| Build.MODEL.contains("Android SDK built for x86"));
supportsEs2 = supportsEs2 || isEmulator;
}
@Override
protected void onPause() {
super.onPause();
if (glView != null) {
glView.onPause();
}
}
}
3 最后一步
一切看起来都已经完成了,但似乎少了点什么。啊哈~,少了STL文件,其实网上有很多STL模型文件免费下载,大家可以随便搜索。我下载了一个胡巴的模型:
下载完成后,运行如下:
看到结果是不是觉得很失望?貌似看不到轮廓,其实,主要是跟灯光有关,我们程序中没有设置灯光。我们知道,我们在真实世界中看到物体主要是物体表面发生漫反射。我们所看到的物体跟光源的位置、物体的材质等等有关。另外,也可以通过贴纹理来做到。
源码地址:https://github.com/changhaismile/OpenGLDemo