The basic of A\B testing

A/B testing really is just a rebranded version of experimental design and statistical inference. Here are three topics that may come up in interview questions about A/B testing.Significance

Can you explain to me what significance means? What a confidence interval means?

When you are running an experiment, you are trying to disprove the null hypothesis that there is no difference between the two groups.If the statistical test returns significant, then you conclude that the effect is unlikely to arise from random chance alone. If you reject something with 95% confidence, then in the case that there is no true effect, then a result like ours (or a result more extreme than ours) will happen in less than 5% of all possible samples.

Significance has a precise meaning in statistics and many people without a formal statistical background misunderstand the concept.To better understand it I would highly recommend reviewing materials on Statistical Inference, for example these MOOC courses: UC BerkeleyX: Stat2.3x: Introduction to Statistics: Inference and CourseraCheck out What is an intuitive explanation of the t-test in hypothesis testing?for a little bit more on significance testing.

Randomization

Why is randomization important in experimental design? How would you answer the question, does attending local meetups cause Etsy sellers to gather more sales?

You can claim that Etsy sellers who attend local meetups tend to be more successful, but can you claim that their success is caused by their attendance? If a seller started to attend local meetups, will she start seeing more sales?In this case, we cannot draw a causal conclusion because of the confounding factors at play. Etsy sellers who attend local meetups are much more likely to be those who sell as a full-time profession. In this case, the confounding variable is *level of commitment as a seller. *This variable drives both attendance at local meetups and amount of sales, so we cannot conclude anything about the causal relationship between meetup attendance and amount of sales.


Randomization is at the core of experimentation because it balances out these confounding variables.By assigning 50% of users to a control group and 50% of users to a treatment group, you can ensure that the rough level of seller commitment is on average balanced between the two groups, as is every single other possible confounding variable, measured or not.There's a slight difficultly here now, since we can't just force 50% of users to go to a local meetup and 50% to not.What we can do however is to have the treatment be an encouragement to attend a local meetup, either directly from Etsy HQ or from the local seller groups themselves.Now you can measure the causal effect of this encouragement, e.g. *Does encouraging sellers to attend local meetups increase the total number of sales?

Multiple Comparisons
What things might we need to be worried about if we have an experiment with 20 different metrics? What if we run 20 experiments simultaneously?Let's say that you're Amazon and you're testing 20 different metrics on your item page - conversion rate, add to cart rate, looking at third-party sellers rate.
The more metrics you are measuring, the more likely you are to get at least one false positive.*Ways to attempt to correct for this include changing your confidence level (e.g. Bonferroni Correction) or doing family-wide tests before you dive in to the individual metrics (e.g. Fisher's Protected LSD). However, these are not used often in practice, and most people decide to just *proceed with caution *and be wary of spurious results.xkcd: Significant has a humorous take on this.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容

  • PLEASE READ THE FOLLOWING APPLE DEVELOPER PROGRAM LICENSE...
    念念不忘的阅读 13,459评论 5 6
  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,450评论 0 23
  • 一 七月天,流火天。 一大早王琳就觉得身上黏糊糊的,冲了个凉也只是解决了一时之苦,一会儿,就又...
    季眉阅读 120评论 0 0
  • 今天早上给死党打电话,知道跟亲教在谈恋爱,我当然也不放过叶小妹教练跟我谈谈恋爱,也为我昨天的混球情绪向叶教练致歉。...
    快乐晴儿阅读 225评论 0 0
  • 一个丰盛的错误 像结霜的肉 被切成厚实的方块 败北的味道 被交口称赞 一个无人理解的词汇 在无人观赏的展会上 被创造出来
    可以_AmorphousYet阅读 174评论 0 0