OpenCV for iOS 学习笔记(十一)—— 基本的阈值操作



  • 处理效果

效果展示,左下角是原图,右下角是灰度图

普通灰度图(图中的蓝色水平线代表着具体的一个阈值。


- 二进制阈值化图中的蓝色水平线代表着具体的一个阈值。
解释:在运用该阈值类型的时候,先要选定一个特定的阈值量,比如:125,这样,新的阈值产生规则可以解释为大于125的像素点的灰度值设定为最大值(如8位灰度值最大为255),灰度值小于125的像素点的灰度值设定为0。

- 反二进制阈值化
解释:该阈值化与二进制阈值化相似,先选定一个特定的灰度值作为阈值,不过最后的设定值相反。(在8位灰度图中,例如大于阈值的设定为0,而小于该阈值的设定为255)。

- 截断阈值化
解释:同样首先需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。(例如:阈值选取为125,那小于125的阈值不改变,大于125的灰度值(230)的像素点就设定为该阈值)。

- 阈值化为0
解释:先选定一个阈值,然后对图像做如下处理:1 像素点的灰度值大于该阈值的不进行任何改变;2 像素点的灰度值小于该阈值的,其灰度值全部变为0。

- 反阈值化为0
解释:原理类似于0阈值,但是在对图像做处理的时候相反,即:像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。

  • 函数说明

    使用threshold函数完成
    double threshold(InputArray src, // 输入的灰度图像
    OutputArray dst, // 输出处理图像
    double thresh, // 阈值大小
    double maxval, // 设定的最大灰度值(该参数运用在二进制与反二进制阈值操作中)
    int type ); // 阈值的类型(上面介绍的五中类型)

  • 实现代码

    • 使用两个UISlider分别控制阈值与阈值类型。
    • 使用函数cvtColor将原图转换为了灰度图
      void cvtColor( InputArray src, // 原图
      OutputArray dst, // 返回灰度图
      int code,
      int dstCn = 0 );
    • 部分代码
      声明
      Mat src_t, src_t_gray, dst_t; // 这个是全局变量
      获取原图像与灰度转化
      // 获取原图像矩阵
      UIImage img = [UIImage imageNamed:@"6_S.png"];
      UIImageToMat(img, src_t);
      // 灰度转化
      cvtColor(src_t, src_t_gray, CV_RGB2GRAY);
      阈值方法
      // 阈值方法 滑动 Slider 就调用
      - (void)threshold {
      /

      0: 二进制阈值
      1: 反二进制阈值
      2: 截断阈值
      3: 0阈值
      4: 反0阈值
      */
      threshold(src_t_gray, dst_t, threshold_value, 255,threshold_type);
      _imageView.image = MatToUIImage(dst_t);
      }
  • 最终效果

效果展示,上面Slider控制阈值类型,下面Slider控制阈值
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容

  • 对于各种图形进行处理操作的过程中,我们常常需要对图像中的像素做出取舍与决策,直接剔除一些低于或者是高于一定值得像素...
    傻傻小萝卜阅读 588评论 0 0
  • 前言opencv在图像处理中使用广泛,许多常见的应用场景例如人脸识别,车牌识别等都是基于opencv开发的。本文是...
    肖丹晨阅读 4,968评论 0 4
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,596评论 18 139
  • 原理: 阈值操作的对象是灰度图像,而阈值是一个灰度值,作用相当于一个分界线,当一个像素值大于阈值时,这个像素值会指...
    鱼小莘阅读 1,066评论 1 1
  • 安装mongodb的注意事项: 一、window7系统安装前要装上补丁KB2731284,否则启动mongodb会...
    木禾米粥阅读 1,473评论 0 0