DeepSeek API 接入应用示例大全

DeepSeek

本篇主要介绍如何快速集成DeepSeek API 接入到应用中示例,废话不多说,上图上代码。

最下面有GitHub代码仓库,由于篇幅限制,更多代码示例都放在仓库里面。

代码示例-图:


企业微信截图_17398478001146.png

安装Python依赖

确保你已经安装了Python 3.8或更高版本。你可以从Python官方网站下载并安装。

pip3 install openai
# or
pip install -r requirements.txt

DeepSeek API 示例

对话 API

简单示例-场景:多轮对话

from openai import OpenAI

# DeepSeek API 是一个“无状态” API,即服务端不记录用户请求的上下文,用户在每次请求时,需将之前所有对话历史拼接好后,传递给对话 API。
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# Round 1
messages = [{"role": "user", "content": "What's the highest mountain in the world?"}]
# messages = [{"role": "user", "content": "世界上最高的山是什么?"}]
response = client.chat.completions.create(
    model="deepseek-chat",
    messages=messages
)

messages.append(response.choices[0].message)
print(f"Messages Round 1: {messages}")

# Round 2
messages.append({"role": "user", "content": "What is the second?"})
# messages.append({"role": "user", "content": "第二个是什么?"})
response = client.chat.completions.create(
    model="deepseek-chat",
    messages=messages
)

messages.append(response.choices[0].message)
print(f"Messages Round 2: {messages}")

简单示例-场景:个人助手

# Please install OpenAI SDK first: `pip3 install openai`

from openai import OpenAI

# client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
client = OpenAI(api_key="sk-62aa54bcf5b2478e88c4bcd4c6d852d1", base_url="https://api.deepseek.com")

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        # 系统角色:可以根据系统角色输入的语言,来判断回答的内容是 `英文or中文`
        # {"role": "system", "content": "You are a helpful assistant"},
        {"role": "system", "content": "你是个乐于助人的助手"},

        # 用户角色
        # {"role": "user", "content": "Hello"},
        {"role": "user", "content": "你好"},
    ],
    stream=False
)

print(response.choices[0].message.content)

推理 API

推理-非流式:

from openai import OpenAI
# client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages
)

reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content

# Round 2
messages.append({'role': 'assistant', 'content': content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages
)
# ...

流式-推理:

from openai import OpenAI
# client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages,
    stream=True
)

reasoning_content = ""
content = ""

for chunk in response:
    if chunk.choices[0].delta.reasoning_content:
        reasoning_content += chunk.choices[0].delta.reasoning_content
    else:
        content += chunk.choices[0].delta.content

# Round 2
messages.append({"role": "assistant", "content": content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages,
    stream=True
)
# ...

代码仓库-更多示例

示例:


企业微信截图_1739847856153.png
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容