对于序列标注来讲,普通CNN有一个劣势,就是卷积之后,末层神经元可能只是得到了原始输入数据中一小块的信息。而对NER来讲,整个句子的每个字都有可能都会对当前需要标注的字做出影响。为了覆盖到输入的全部信息就需要加入更多的卷积层, 导致层数越来越深,参数越来越多,而为了防止过拟合又要加入更多的Dropout之类的正则化,带来更多的超参数,整个模型变得庞大和难以训练。因为CNN这样的劣势,大部分序列标注问题人们还是使用biLSTM之类的网络结构,尽可能使用网络的记忆力记住全句的信息来对单个字做标注。
9NER实战-(4)IDCNN+CRF
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
推荐阅读更多精彩内容
- Training spaCy’s Statistical Models训练spaCy模型 This guide d...
- 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结。 本文介...
- 前面的文章主要从理论的角度介绍了自然语言人机对话系统所可能涉及到的多个领域的经典模型和基础知识。这篇文章,甚至之后...
- 命名体识别(Name Entity Recognition)是自然语言处理(Nature Language Pro...