实践环境准备
服务器说明
我这里使用的是五台CentOS-7.7的虚拟机,具体信息如下表:
系统版本 | IP地址 | 节点角色 | CPU | Memory | Hostname |
---|---|---|---|---|---|
CentOS-7.7 | 192.168.243.143 | master | >=2 | >=2G | m1 |
CentOS-7.7 | 192.168.243.144 | master | >=2 | >=2G | m2 |
CentOS-7.7 | 192.168.243.145 | master | >=2 | >=2G | m3 |
CentOS-7.7 | 192.168.243.146 | worker | >=2 | >=2G | n1 |
CentOS-7.7 | 192.168.243.147 | worker | >=2 | >=2G | n2 |
这五台机器均需事先安装好Docker,由于安装过程比较简单这里不进行介绍,可以参考官方文档:
软件版本说明:
- k8s:1.19.0
- etcd:3.4.13
- coredns:1.7.0
- pause:3.2
- calico:3.16.0
- cfssl:1.2.0
- kubernetes dashboard:2.0.3
以下是搭建k8s集群过程中ip、端口等网络相关配置的说明,后续将不再重复解释:
# 3个master节点的ip
192.168.243.143
192.168.243.144
192.168.243.145
# 2个worker节点的ip
192.168.243.146
192.168.243.147
# 3个master节点的hostname
m1、m2、m3
# api-server的高可用虚拟ip(keepalived会用到,可自定义)
192.168.243.101
# keepalived用到的网卡接口名,一般是eth0,可执行ip a命令查看
ens32
# kubernetes服务ip网段(可自定义)
10.255.0.0/16
# kubernetes的api-server服务的ip,一般是cidr的第一个(可自定义)
10.255.0.1
# dns服务的ip地址,一般是cidr的第二个(可自定义)
10.255.0.2
# pod网段(可自定义)
172.23.0.0/16
# NodePort的取值范围(可自定义)
8400-8900
系统设置(所有节点)
1、主机名必须每个节点都不一样,并且保证所有点之间可以通过hostname互相访问。设置hostname:
# 查看主机名
$ hostname
# 修改主机名
$ hostnamectl set-hostname <your_hostname>
配置host,使所有节点之间可以通过hostname互相访问:
$ vim /etc/hosts
192.168.243.143 m1
192.168.243.144 m2
192.168.243.145 m3
192.168.243.146 n1
192.168.243.147 n2
2、安装依赖包:
# 更新yum
$ yum update -y
# 安装依赖包
$ yum install -y conntrack ipvsadm ipset jq sysstat curl wget iptables libseccomp
3、关闭防火墙、swap,重置iptables:
# 关闭防火墙
$ systemctl stop firewalld && systemctl disable firewalld
# 重置iptables
$ iptables -F && iptables -X && iptables -F -t nat && iptables -X -t nat && iptables -P FORWARD ACCEPT
# 关闭swap
$ swapoff -a
$ sed -i '/swap/s/^\(.*\)$/#\1/g' /etc/fstab
# 关闭selinux
$ setenforce 0
# 关闭dnsmasq(否则可能导致docker容器无法解析域名)
$ service dnsmasq stop && systemctl disable dnsmasq
# 重启docker服务
$ systemctl restart docker
4、系统参数设置:
# 制作配置文件
$ cat > /etc/sysctl.d/kubernetes.conf <<EOF
net.bridge.bridge-nf-call-iptables=1
net.bridge.bridge-nf-call-ip6tables=1
net.ipv4.ip_forward=1
vm.swappiness=0
vm.overcommit_memory=1
vm.panic_on_oom=0
fs.inotify.max_user_watches=89100
EOF
# 生效文件
$ sysctl -p /etc/sysctl.d/kubernetes.conf
准备二进制文件(所有节点)
配置免密登录
由于二进制的搭建方式需要各个节点具备k8s组件的二进制可执行文件,所以我们得将准备好的二进制文件copy到各个节点上。为了方便文件的copy,我们可以选择一个中转节点(随便一个节点),配置好跟其他所有节点的免密登录,这样在copy的时候就不需要反复输入密码了。
我这里选择m1
作为中转节点,首先在m1
节点上创建一对密钥:
[root@m1 ~]# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:9CVdxUGLSaZHMwzbOs+aF/ibxNpsUaaY4LVJtC3DJiU root@m1
The key's randomart image is:
+---[RSA 2048]----+
| .o*o=o|
| E +Bo= o|
| . *o== . |
| . + @o. o |
| S BoO + |
| . *=+ |
| .=o |
| B+. |
| +o=. |
+----[SHA256]-----+
[root@m1 ~]#
查看公钥的内容:
[root@m1 ~]# cat ~/.ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDF99/mk7syG+OjK5gFFKLZDpMWcF3BEF1Gaa8d8xNIMKt2qGgxyYOC7EiGcxanKw10MQCoNbiAG1UTd0/wgp/UcPizvJ5AKdTFImzXwRdXVbMYkjgY2vMYzpe8JZ5JHODggQuGEtSE9Q/RoCf29W2fIoOKTKaC2DNyiKPZZ+zLjzQr8sJC3BRb1Tk4p8cEnTnMgoFwMTZD8AYMNHwhBeo5NXZSE8zyJiWCqQQkD8n31wQxVgSL9m3rD/1wnsBERuq3cf7LQMiBTxmt1EyqzqM4S1I2WEfJkT0nJZeY+zbHqSJq2LbXmCmWUg5LmyxaE9Ksx4LDIl7gtVXe99+E1NLd root@m1
[root@m1 ~]#
然后把id_rsa.pub
文件中的内容copy到其他机器的授权文件中,在其他节点执行下面命令(这里的公钥替换成你生成的公钥):
$ echo "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDF99/mk7syG+OjK5gFFKLZDpMWcF3BEF1Gaa8d8xNIMKt2qGgxyYOC7EiGcxanKw10MQCoNbiAG1UTd0/wgp/UcPizvJ5AKdTFImzXwRdXVbMYkjgY2vMYzpe8JZ5JHODggQuGEtSE9Q/RoCf29W2fIoOKTKaC2DNyiKPZZ+zLjzQr8sJC3BRb1Tk4p8cEnTnMgoFwMTZD8AYMNHwhBeo5NXZSE8zyJiWCqQQkD8n31wQxVgSL9m3rD/1wnsBERuq3cf7LQMiBTxmt1EyqzqM4S1I2WEfJkT0nJZeY+zbHqSJq2LbXmCmWUg5LmyxaE9Ksx4LDIl7gtVXe99+E1NLd root@m1" >> ~/.ssh/authorized_keys
测试一下能否免密登录,可以看到我这里登录m2
节点不需要输入密码:
[root@m1 ~]# ssh m2
Last login: Fri Sep 4 15:55:59 2020 from m1
[root@m2 ~]#
下载二进制文件
下载Kubernetes
我们首先下载k8s的二进制文件,k8s的官方下载地址如下:
我这里下载的是1.19.0
版本,注意下载链接是在CHANGELOG/CHANGELOG-1.19.md里面:
只需要在“Server Binaries”一栏选择对应的平台架构下载即可,因为Server的压缩包里已经包含了Node和Client的二进制文件:
复制下载链接,到系统上下载并解压:
[root@m1 ~]# cd /usr/local/src
[root@m1 /usr/local/src]# wget https://dl.k8s.io/v1.19.0/kubernetes-server-linux-amd64.tar.gz # 下载
[root@m1 /usr/local/src]# tar -zxvf kubernetes-server-linux-amd64.tar.gz # 解压
k8s的二进制文件都存放在kubernetes/server/bin/
目录下:
[root@m1 /usr/local/src]# ls kubernetes/server/bin/
apiextensions-apiserver kube-apiserver kube-controller-manager kubectl kube-proxy.docker_tag kube-scheduler.docker_tag
kubeadm kube-apiserver.docker_tag kube-controller-manager.docker_tag kubelet kube-proxy.tar kube-scheduler.tar
kube-aggregator kube-apiserver.tar kube-controller-manager.tar kube-proxy kube-scheduler mounter
[root@m1 /usr/local/src]#
为了后面copy文件方便,我们需要整理一下文件,将不同节点所需的二进制文件统一放在相同的目录下。具体步骤如下:
[root@m1 /usr/local/src]# mkdir -p k8s-master k8s-worker
[root@m1 /usr/local/src]# cd kubernetes/server/bin/
[root@m1 /usr/local/src/kubernetes/server/bin]# for i in kubeadm kube-apiserver kube-controller-manager kubectl kube-scheduler;do cp $i /usr/local/src/k8s-master/; done
[root@m1 /usr/local/src/kubernetes/server/bin]# for i in kubelet kube-proxy;do cp $i /usr/local/src/k8s-worker/; done
[root@m1 /usr/local/src/kubernetes/server/bin]#
整理后的文件都被放在了相应的目录下,k8s-master
目录存放master
所需的二进制文件,k8s-worker
目录则存放了worker
节点所需的文件:
[root@m1 /usr/local/src/kubernetes/server/bin]# cd /usr/local/src
[root@m1 /usr/local/src]# ls k8s-master/
kubeadm kube-apiserver kube-controller-manager kubectl kube-scheduler
[root@m1 /usr/local/src]# ls k8s-worker/
kubelet kube-proxy
[root@m1 /usr/local/src]#
下载etcd
k8s依赖于etcd做分布式存储,所以接下来我们还需要下载etcd,官方下载地址如下:
我这里下载的是3.4.13
版本:
同样,复制下载链接到系统上使用wget
命令进行下载并解压:
[root@m1 /usr/local/src]# wget https://github.com/etcd-io/etcd/releases/download/v3.4.13/etcd-v3.4.13-linux-amd64.tar.gz
[root@m1 /usr/local/src]# mkdir etcd && tar -zxvf etcd-v3.4.13-linux-amd64.tar.gz -C etcd --strip-components 1
[root@m1 /usr/local/src]# ls etcd
Documentation etcd etcdctl README-etcdctl.md README.md READMEv2-etcdctl.md
[root@m1 /usr/local/src]#
将etcd的二进制文件拷贝到k8s-master
目录下:
[root@m1 /usr/local/src]# cd etcd
[root@m1 /usr/local/src/etcd]# for i in etcd etcdctl;do cp $i /usr/local/src/k8s-master/; done
[root@m1 /usr/local/src/etcd]# ls ../k8s-master/
etcd etcdctl kubeadm kube-apiserver kube-controller-manager kubectl kube-scheduler
[root@m1 /usr/local/src/etcd]#
分发文件并设置好PATH
在所有节点上创建/opt/kubernetes/bin
目录:
$ mkdir -p /opt/kubernetes/bin
将二进制文件分发到相应的节点上:
[root@m1 /usr/local/src]# for i in m1 m2 m3; do scp k8s-master/* $i:/opt/kubernetes/bin/; done
[root@m1 /usr/local/src]# for i in n1 n2; do scp k8s-worker/* $i:/opt/kubernetes/bin/; done
给每个节点设置PATH
环境变量:
[root@m1 /usr/local/src]# for i in m1 m2 m3 n1 n2; do ssh $i "echo 'PATH=/opt/kubernetes/bin:$PATH' >> ~/.bashrc"; done
高可用集群部署
生成CA证书(任意节点)
安装cfssl
cfssl
是非常好用的CA工具,我们用它来生成证书和秘钥文件。安装过程比较简单,我这里选择在m1
节点上安装。首先下载cfssl
的二进制文件:
[root@m1 ~]# mkdir -p ~/bin
[root@m1 ~]# wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O ~/bin/cfssl
[root@m1 ~]# wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O ~/bin/cfssljson
将这两个文件授予可执行的权限:
[root@m1 ~]# chmod +x ~/bin/cfssl ~/bin/cfssljson
设置一下PATH
环境变量:
[root@m1 ~]# vim ~/.bashrc
PATH=~/bin:$PATH
[root@m1 ~]# source ~/.bashrc
验证一下是否能正常执行:
[root@m1 ~]# cfssl version
Version: 1.2.0
Revision: dev
Runtime: go1.6
[root@m1 ~]#
生成根证书
根证书是集群所有节点共享的,所以只需要创建一个 CA 证书,后续创建的所有证书都由它签名。首先创建一个ca-csr.json
文件,内容如下:
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "seven"
}
]
}
执行以下命令,生成证书和私钥
[root@m1 ~]# cfssl gencert -initca ca-csr.json | cfssljson -bare ca
生成完成后会有以下文件(我们最终想要的就是ca-key.pem
和ca.pem
,一个秘钥,一个证书):
[root@m1 ~]# ls *.pem
ca-key.pem ca.pem
[root@m1 ~]#
将这两个文件分发到每个master
节点上:
[root@m1 ~]# for i in m1 m2 m3; do ssh $i "mkdir -p /etc/kubernetes/pki/"; done
[root@m1 ~]# for i in m1 m2 m3; do scp *.pem $i:/etc/kubernetes/pki/; done
部署etcd集群(master节点)
生成证书和私钥
接下来我们需要生成etcd节点使用的证书和私钥,创建ca-config.json
文件,内容如下:
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
],
"expiry": "87600h"
}
}
}
}
然后创建etcd-csr.json
文件,内容如下:
{
"CN": "etcd",
"hosts": [
"127.0.0.1",
"192.168.243.143",
"192.168.243.144",
"192.168.243.145"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "seven"
}
]
}
-
hosts
里的ip是master
节点的ip
有了以上两个文件以后就可以使用如下命令生成etcd的证书和私钥:
[root@m1 ~]# cfssl gencert -ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes etcd-csr.json | cfssljson -bare etcd
[root@m1 ~]# ls etcd*.pem # 执行成功会生成两个文件
etcd-key.pem etcd.pem
[root@m1 ~]#
然后将这两个文件分发到每个etcd节点:
[root@m1 ~]# for i in m1 m2 m3; do scp etcd*.pem $i:/etc/kubernetes/pki/; done
创建service文件
创建etcd.service
文件,用于后续可以通过systemctl
命令去启动、停止及重启etcd服务,内容如下:
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
Documentation=https://github.com/coreos
[Service]
Type=notify
WorkingDirectory=/var/lib/etcd/
ExecStart=/opt/kubernetes/bin/etcd \
--data-dir=/var/lib/etcd \
--name=m1 \
--cert-file=/etc/kubernetes/pki/etcd.pem \
--key-file=/etc/kubernetes/pki/etcd-key.pem \
--trusted-ca-file=/etc/kubernetes/pki/ca.pem \
--peer-cert-file=/etc/kubernetes/pki/etcd.pem \
--peer-key-file=/etc/kubernetes/pki/etcd-key.pem \
--peer-trusted-ca-file=/etc/kubernetes/pki/ca.pem \
--peer-client-cert-auth \
--client-cert-auth \
--listen-peer-urls=https://192.168.243.143:2380 \
--initial-advertise-peer-urls=https://192.168.243.143:2380 \
--listen-client-urls=https://192.168.243.143:2379,http://127.0.0.1:2379 \
--advertise-client-urls=https://192.168.243.143:2379 \
--initial-cluster-token=etcd-cluster-0 \
--initial-cluster=m1=https://192.168.243.143:2380,m2=https://192.168.243.144:2380,m3=https://192.168.243.145:2380 \
--initial-cluster-state=new
Restart=on-failure
RestartSec=5
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
将该配置文件分发到每个master
节点:
[root@m1 ~]# for i in m1 m2 m3; do scp etcd.service $i:/etc/systemd/system/; done
分发完之后,需要在除了m1
以外的其他master
节点上修改etcd.service
文件的内容,主要修改如下几处:
# 修改为所在节点的hostname
--name=m1
# 以下几项则是将ip修改为所在节点的ip,本地ip不用修改
--listen-peer-urls=https://192.168.243.143:2380
--initial-advertise-peer-urls=https://192.168.243.143:2380
--listen-client-urls=https://192.168.243.143:2379,http://127.0.0.1:2379
--advertise-client-urls=https://192.168.243.143:2379
接着在每个master
节点上创建etcd的工作目录:
[root@m1 ~]# for i in m1 m2 m3; do ssh $i "mkdir -p /var/lib/etcd"; done
启动服务
在各个etcd节点上执行如下命令启动etcd服务:
$ systemctl daemon-reload && systemctl enable etcd && systemctl restart etcd
-
Tips:etcd 进程首次启动时会等待其它节点的 etcd 加入集群,命令
systemctl start etcd
会卡住一段时间,为正常现象。
查看服务状态,状态为active (running)
代表启动成功:
$ systemctl status etcd
如果没有启动成功,可以查看启动日志排查下问题:
$ journalctl -f -u etcd
部署api-server(master节点)
生成证书和私钥
第一步还是一样的,首先生成api-server的证书和私钥。创建kubernetes-csr.json
文件,内容如下:
{
"CN": "kubernetes",
"hosts": [
"127.0.0.1",
"192.168.243.143",
"192.168.243.144",
"192.168.243.145",
"192.168.243.101",
"10.255.0.1",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "seven"
}
]
}
生成证书、私钥:
[root@m1 ~]# cfssl gencert -ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes kubernetes-csr.json | cfssljson -bare kubernetes
[root@m1 ~]# ls kubernetes*.pem
kubernetes-key.pem kubernetes.pem
[root@m1 ~]#
分发到每个master节点:
[root@m1 ~]# for i in m1 m2 m3; do scp kubernetes*.pem $i:/etc/kubernetes/pki/; done
创建service文件
创建kube-apiserver.service
文件,内容如下:
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=network.target
[Service]
ExecStart=/opt/kubernetes/bin/kube-apiserver \
--enable-admission-plugins=NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota \
--anonymous-auth=false \
--advertise-address=192.168.243.143 \
--bind-address=0.0.0.0 \
--insecure-port=0 \
--authorization-mode=Node,RBAC \
--runtime-config=api/all=true \
--enable-bootstrap-token-auth \
--service-cluster-ip-range=10.255.0.0/16 \
--service-node-port-range=8400-8900 \
--tls-cert-file=/etc/kubernetes/pki/kubernetes.pem \
--tls-private-key-file=/etc/kubernetes/pki/kubernetes-key.pem \
--client-ca-file=/etc/kubernetes/pki/ca.pem \
--kubelet-client-certificate=/etc/kubernetes/pki/kubernetes.pem \
--kubelet-client-key=/etc/kubernetes/pki/kubernetes-key.pem \
--service-account-key-file=/etc/kubernetes/pki/ca-key.pem \
--etcd-cafile=/etc/kubernetes/pki/ca.pem \
--etcd-certfile=/etc/kubernetes/pki/kubernetes.pem \
--etcd-keyfile=/etc/kubernetes/pki/kubernetes-key.pem \
--etcd-servers=https://192.168.243.143:2379,https://192.168.243.144:2379,https://192.168.243.145:2379 \
--enable-swagger-ui=true \
--allow-privileged=true \
--apiserver-count=3 \
--audit-log-maxage=30 \
--audit-log-maxbackup=3 \
--audit-log-maxsize=100 \
--audit-log-path=/var/log/kube-apiserver-audit.log \
--event-ttl=1h \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2
Restart=on-failure
RestartSec=5
Type=notify
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
将该配置文件分发到每个master
节点:
[root@m1 ~]# for i in m1 m2 m3; do scp kube-apiserver.service $i:/etc/systemd/system/; done
分发完之后,需要在除了m1
以外的其他master
节点上修改kube-apiserver.service
文件的内容。只需要修改以下一项:
# 修改为所在节点的ip即可
--advertise-address=192.168.243.143
然后在所有的master
节点上创建api-server
的日志目录:
[root@m1 ~]# for i in m1 m2 m3; do ssh $i "mkdir -p /var/log/kubernetes"; done
启动服务
在各个master
节点上执行如下命令启动api-server
服务:
$ systemctl daemon-reload && systemctl enable kube-apiserver && systemctl restart kube-apiserver
查看服务状态,状态为active (running)
代表启动成功:
$ systemctl status kube-apiserver
检查是否有正常监听6443
端口:
[root@m1 ~]# netstat -lntp |grep 6443
tcp6 0 0 :::6443 :::* LISTEN 24035/kube-apiserve
[root@m1 ~]#
如果没有启动成功,可以查看启动日志排查下问题:
$ journalctl -f -u kube-apiserver
部署keepalived使api-server高可用(master节点)
安装keepalived
在两个主节点上安装keepalived即可(一主一备),我这里选择在m1
和m2
节点上安装:
$ yum install -y keepalived
创建keepalived配置文件
在m1
和m2
节点上创建一个目录用于存放keepalived的配置文件:
[root@m1 ~]# for i in m1 m2; do ssh $i "mkdir -p /etc/keepalived"; done
在m1
(角色为master)上创建配置文件如下:
[root@m1 ~]# mv /etc/keepalived/keepalived.conf /etc/keepalived/keepalived.conf.back
[root@m1 ~]# vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
router_id keepalive-master
}
vrrp_script check_apiserver {
# 检测脚本路径
script "/etc/keepalived/check-apiserver.sh"
# 多少秒检测一次
interval 3
# 失败的话权重-2
weight -2
}
vrrp_instance VI-kube-master {
state MASTER # 定义节点角色
interface ens32 # 网卡名称
virtual_router_id 68
priority 100
dont_track_primary
advert_int 3
virtual_ipaddress {
# 自定义虚拟ip
192.168.243.101
}
track_script {
check_apiserver
}
}
在m2
(角色为backup)上创建配置文件如下:
[root@m1 ~]# mv /etc/keepalived/keepalived.conf /etc/keepalived/keepalived.conf.back
[root@m1 ~]# vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
router_id keepalive-backup
}
vrrp_script check_apiserver {
script "/etc/keepalived/check-apiserver.sh"
interval 3
weight -2
}
vrrp_instance VI-kube-master {
state BACKUP
interface ens32
virtual_router_id 68
priority 99
dont_track_primary
advert_int 3
virtual_ipaddress {
192.168.243.101
}
track_script {
check_apiserver
}
}
分别在m1
和m2
节点上创建keepalived的检测脚本:
$ vim /etc/keepalived/check-apiserver.sh # 创建检测脚本,内容如下
#!/bin/sh
errorExit() {
echo "*** $*" 1>&2
exit 1
}
# 检查本机api-server是否正常
curl --silent --max-time 2 --insecure https://localhost:6443/ -o /dev/null || errorExit "Error GET https://localhost:6443/"
# 如果虚拟ip绑定在本机上,则检查能否通过虚拟ip正常访问到api-server
if ip addr | grep -q 192.168.243.101; then
curl --silent --max-time 2 --insecure https://192.168.243.101:6443/ -o /dev/null || errorExit "Error GET https://192.168.243.101:6443/"
fi
启动keepalived
分别在master和backup上启动keepalived服务:
$ systemctl enable keepalived && service keepalived start
查看服务状态,状态为active (running)
代表启动成功:
$ systemctl status keepalived
查看有无正常绑定虚拟ip:
$ ip a |grep 192.168.243.101
访问测试,能返回数据代表服务是正在运行的:
[root@m1 ~]# curl --insecure https://192.168.243.101:6443/
{
"kind": "Status",
"apiVersion": "v1",
"metadata": {
},
"status": "Failure",
"message": "Unauthorized",
"reason": "Unauthorized",
"code": 401
}
[root@m1 ~]#
如果没有启动成功,可以查看日志排查下问题:
$ journalctl -f -u keepalived
部署kubectl(任意节点)
kubectl
是 kubernetes 集群的命令行管理工具,它默认从 ~/.kube/config
文件读取 kube-apiserver
地址、证书、用户名等信息。
创建 admin 证书和私钥
kubectl
与 apiserver https 安全端口通信,apiserver 对提供的证书进行认证和授权。kubectl
作为集群的管理工具,需要被授予最高权限,所以这里创建具有最高权限的 admin 证书。首先创建admin-csr.json
文件,内容如下:
{
"CN": "admin",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "system:masters",
"OU": "seven"
}
]
}
使用cfssl
工具创建证书和私钥:
[root@m1 ~]# cfssl gencert -ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes admin-csr.json | cfssljson -bare admin
[root@m1 ~]# ls admin*.pem
admin-key.pem admin.pem
[root@m1 ~]#
创建kubeconfig配置文件
kubeconfig
为 kubectl
的配置文件,包含访问 apiserver 的所有信息,如 apiserver 地址、CA 证书和自身使用的证书。
1、设置集群参数:
[root@m1 ~]# kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=https://192.168.243.101:6443 \
--kubeconfig=kube.config
2、设置客户端认证参数:
[root@m1 ~]# kubectl config set-credentials admin \
--client-certificate=admin.pem \
--client-key=admin-key.pem \
--embed-certs=true \
--kubeconfig=kube.config
3、设置上下文参数:
[root@m1 ~]# kubectl config set-context kubernetes \
--cluster=kubernetes \
--user=admin \
--kubeconfig=kube.config
4、设置默认上下文:
[root@m1 ~]# kubectl config use-context kubernetes --kubeconfig=kube.config
5、拷贝文件配置文件并重命名为~/.kube/config
:
[root@m1 ~]# cp kube.config ~/.kube/config
授予 kubernetes 证书访问 kubelet API 的权限
在执行 kubectl exec
、run
、logs
等命令时,apiserver 会转发到 kubelet
。这里定义 RBAC 规则,授权 apiserver 调用 kubelet
API。
[root@m1 ~]# kubectl create clusterrolebinding kube-apiserver:kubelet-apis --clusterrole=system:kubelet-api-admin --user kubernetes
clusterrolebinding.rbac.authorization.k8s.io/kube-apiserver:kubelet-apis created
[root@m1 ~]#
测试kubectl
1、查看集群信息:
[root@m1 ~]# kubectl cluster-info
Kubernetes master is running at https://192.168.243.101:6443
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
[root@m1 ~]#
2、查看集群中所有命名空间下的资源信息:
[root@m1 ~]# kubectl get all --all-namespaces
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default service/kubernetes ClusterIP 10.255.0.1 <none> 443/TCP 43m
[root@m1 ~]#
4、查看集群中的组件状态:
[root@m1 ~]# kubectl get componentstatuses
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE ERROR
scheduler Unhealthy Get "http://127.0.0.1:10251/healthz": dial tcp 127.0.0.1:10251: connect: connection refused
controller-manager Unhealthy Get "http://127.0.0.1:10252/healthz": dial tcp 127.0.0.1:10252: connect: connection refused
etcd-0 Healthy {"health":"true"}
etcd-1 Healthy {"health":"true"}
etcd-2 Healthy {"health":"true"}
[root@m1 ~]#
配置kubectl命令补全
kubectl
是用于与k8s集群交互的一个命令行工具,操作k8s基本离不开这个工具,所以该工具所支持的命令比较多。好在kubectl
支持设置命令补全,使用kubectl completion -h
可以查看各个平台下的设置示例。这里以Linux平台为例,演示一下如何设置这个命令补全,完成以下操作后就可以使用tap
键补全命令了:
[root@m1 ~]# yum install bash-completion -y
[root@m1 ~]# source /usr/share/bash-completion/bash_completion
[root@m1 ~]# source <(kubectl completion bash)
[root@m1 ~]# kubectl completion bash > ~/.kube/completion.bash.inc
[root@m1 ~]# printf "
# Kubectl shell completion
source '$HOME/.kube/completion.bash.inc'
" >> $HOME/.bash_profile
[root@m1 ~]# source $HOME/.bash_profile
部署controller-manager(master节点)
controller-manager
启动后将通过竞争选举机制产生一个 leader 节点,其它节点为阻塞状态。当 leader 节点不可用后,剩余节点将再次进行选举产生新的 leader 节点,从而保证服务的可用性。
创建证书和私钥
创建controller-manager-csr.json
文件,内容如下:
{
"CN": "system:kube-controller-manager",
"key": {
"algo": "rsa",
"size": 2048
},
"hosts": [
"127.0.0.1",
"192.168.243.143",
"192.168.243.144",
"192.168.243.145"
],
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "system:kube-controller-manager",
"OU": "seven"
}
]
}
生成证书、私钥:
[root@m1 ~]# cfssl gencert -ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes controller-manager-csr.json | cfssljson -bare controller-manager
[root@m1 ~]# ls controller-manager*.pem
controller-manager-key.pem controller-manager.pem
[root@m1 ~]#
分发到每个master
节点:
[root@m1 ~]# for i in m1 m2 m3; do scp controller-manager*.pem $i:/etc/kubernetes/pki/; done
创建controller-manager的kubeconfig
创建kubeconfig
:
# 设置集群参数
[root@m1 ~]# kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=https://192.168.243.101:6443 \
--kubeconfig=controller-manager.kubeconfig
# 设置客户端认证参数
[root@m1 ~]# kubectl config set-credentials system:kube-controller-manager \
--client-certificate=controller-manager.pem \
--client-key=controller-manager-key.pem \
--embed-certs=true \
--kubeconfig=controller-manager.kubeconfig
# 设置上下文参数
[root@m1 ~]# kubectl config set-context system:kube-controller-manager \
--cluster=kubernetes \
--user=system:kube-controller-manager \
--kubeconfig=controller-manager.kubeconfig
设置默认上下文:
[root@m1 ~]# kubectl config use-context system:kube-controller-manager --kubeconfig=controller-manager.kubeconfig
分发controller-manager.kubeconfig
文件到每个master
节点上:
[root@m1 ~]# for i in m1 m2 m3; do scp controller-manager.kubeconfig $i:/etc/kubernetes/; done
创建service文件
创建kube-controller-manager.service
文件,内容如下:
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
[Service]
ExecStart=/opt/kubernetes/bin/kube-controller-manager \
--port=0 \
--secure-port=10252 \
--bind-address=127.0.0.1 \
--kubeconfig=/etc/kubernetes/controller-manager.kubeconfig \
--service-cluster-ip-range=10.255.0.0/16 \
--cluster-name=kubernetes \
--cluster-signing-cert-file=/etc/kubernetes/pki/ca.pem \
--cluster-signing-key-file=/etc/kubernetes/pki/ca-key.pem \
--allocate-node-cidrs=true \
--cluster-cidr=172.23.0.0/16 \
--experimental-cluster-signing-duration=87600h \
--root-ca-file=/etc/kubernetes/pki/ca.pem \
--service-account-private-key-file=/etc/kubernetes/pki/ca-key.pem \
--leader-elect=true \
--feature-gates=RotateKubeletServerCertificate=true \
--controllers=*,bootstrapsigner,tokencleaner \
--horizontal-pod-autoscaler-use-rest-clients=true \
--horizontal-pod-autoscaler-sync-period=10s \
--tls-cert-file=/etc/kubernetes/pki/controller-manager.pem \
--tls-private-key-file=/etc/kubernetes/pki/controller-manager-key.pem \
--use-service-account-credentials=true \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
将kube-controller-manager.service
配置文件分发到每个master
节点上:
[root@m1 ~]# for i in m1 m2 m3; do scp kube-controller-manager.service $i:/etc/systemd/system/; done
启动服务
在各个master
节点上启动kube-controller-manager
服务,具体命令如下:
$ systemctl daemon-reload && systemctl enable kube-controller-manager && systemctl restart kube-controller-manager
查看服务状态,状态为active (running)
代表启动成功:
$ systemctl status kube-controller-manager
查看leader信息:
[root@m1 ~]# kubectl get endpoints kube-controller-manager --namespace=kube-system -o yaml
apiVersion: v1
kind: Endpoints
metadata:
annotations:
control-plane.alpha.kubernetes.io/leader: '{"holderIdentity":"m1_ae36dc74-68d0-444d-8931-06b37513990a","leaseDurationSeconds":15,"acquireTime":"2020-09-04T15:47:14Z","renewTime":"2020-09-04T15:47:39Z","leaderTransitions":0}'
creationTimestamp: "2020-09-04T15:47:15Z"
managedFields:
- apiVersion: v1
fieldsType: FieldsV1
fieldsV1:
f:metadata:
f:annotations:
.: {}
f:control-plane.alpha.kubernetes.io/leader: {}
manager: kube-controller-manager
operation: Update
time: "2020-09-04T15:47:39Z"
name: kube-controller-manager
namespace: kube-system
resourceVersion: "1908"
selfLink: /api/v1/namespaces/kube-system/endpoints/kube-controller-manager
uid: 149b117e-f7c4-4ad8-bc83-09345886678a
[root@m1 ~]#
如果没有启动成功,可以查看日志排查下问题:
$ journalctl -f -u kube-controller-manager
部署scheduler(master节点)
scheduler
启动后将通过竞争选举机制产生一个 leader 节点,其它节点为阻塞状态。当 leader 节点不可用后,剩余节点将再次进行选举产生新的 leader 节点,从而保证服务的可用性。
创建证书和私钥
创建scheduler-csr.json
文件,内容如下:
{
"CN": "system:kube-scheduler",
"hosts": [
"127.0.0.1",
"192.168.243.143",
"192.168.243.144",
"192.168.243.145"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "system:kube-scheduler",
"OU": "seven"
}
]
}
生成证书和私钥:
[root@m1 ~]# cfssl gencert -ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes scheduler-csr.json | cfssljson -bare kube-scheduler
[root@m1 ~]# ls kube-scheduler*.pem
kube-scheduler-key.pem kube-scheduler.pem
[root@m1 ~]#
分发到每个master
节点:
[root@m1 ~]# for i in m1 m2 m3; do scp kube-scheduler*.pem $i:/etc/kubernetes/pki/; done
创建scheduler的kubeconfig
创建kubeconfig
:
# 设置集群参数
[root@m1 ~]# kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=https://192.168.243.101:6443 \
--kubeconfig=kube-scheduler.kubeconfig
# 设置客户端认证参数
[root@m1 ~]# kubectl config set-credentials system:kube-scheduler \
--client-certificate=kube-scheduler.pem \
--client-key=kube-scheduler-key.pem \
--embed-certs=true \
--kubeconfig=kube-scheduler.kubeconfig
# 设置上下文参数
[root@m1 ~]# kubectl config set-context system:kube-scheduler \
--cluster=kubernetes \
--user=system:kube-scheduler \
--kubeconfig=kube-scheduler.kubeconfig
设置默认上下文:
[root@m1 ~]# kubectl config use-context system:kube-scheduler --kubeconfig=kube-scheduler.kubeconfig
分发kube-scheduler.kubeconfig
文件到每个master
节点上:
[root@m1 ~]# for i in m1 m2 m3; do scp kube-scheduler.kubeconfig $i:/etc/kubernetes/; done
创建service文件
创建kube-scheduler.service
文件,内容如下:
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
[Service]
ExecStart=/opt/kubernetes/bin/kube-scheduler \
--address=127.0.0.1 \
--kubeconfig=/etc/kubernetes/kube-scheduler.kubeconfig \
--leader-elect=true \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
将kube-scheduler.service
配置文件分发到每个master
节点上:
[root@m1 ~]# for i in m1 m2 m3; do scp kube-scheduler.service $i:/etc/systemd/system/; done
启动服务
在每个master
节点上启动kube-scheduler
服务:
$ systemctl daemon-reload && systemctl enable kube-scheduler && systemctl restart kube-scheduler
查看服务状态,状态为active (running)
代表启动成功:
$ service kube-scheduler status
查看leader信息:
[root@m1 ~]# kubectl get endpoints kube-scheduler --namespace=kube-system -o yaml
apiVersion: v1
kind: Endpoints
metadata:
annotations:
control-plane.alpha.kubernetes.io/leader: '{"holderIdentity":"m1_f6c4da9f-85b4-47e2-919d-05b24b4aacac","leaseDurationSeconds":15,"acquireTime":"2020-09-04T16:03:57Z","renewTime":"2020-09-04T16:04:19Z","leaderTransitions":0}'
creationTimestamp: "2020-09-04T16:03:57Z"
managedFields:
- apiVersion: v1
fieldsType: FieldsV1
fieldsV1:
f:metadata:
f:annotations:
.: {}
f:control-plane.alpha.kubernetes.io/leader: {}
manager: kube-scheduler
operation: Update
time: "2020-09-04T16:04:19Z"
name: kube-scheduler
namespace: kube-system
resourceVersion: "3230"
selfLink: /api/v1/namespaces/kube-system/endpoints/kube-scheduler
uid: c2f2210d-b00f-4157-b597-d3e3b4bec38b
[root@m1 ~]#
如果没有启动成功,可以查看日志排查下问题:
$ journalctl -f -u kube-scheduler
部署kubelet(worker节点)
预先下载需要的docker镜像
首先我们需要预先下载镜像到所有的节点上,由于有些镜像不翻墙无法下载,所以这里提供了一个简单的脚本拉取阿里云仓库的镜像并修改了tag
:
[root@m1 ~]# vim download-images.sh
#!/bin/bash
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/pause-amd64:3.2
docker tag registry.cn-hangzhou.aliyuncs.com/google_containers/pause-amd64:3.2 k8s.gcr.io/pause-amd64:3.2
docker rmi registry.cn-hangzhou.aliyuncs.com/google_containers/pause-amd64:3.2
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/coredns:1.7.0
docker tag registry.cn-hangzhou.aliyuncs.com/google_containers/coredns:1.7.0 k8s.gcr.io/coredns:1.7.0
docker rmi registry.cn-hangzhou.aliyuncs.com/google_containers/coredns:1.7.0
将脚本分发到其他节点上:
[root@m1 ~]# for i in m2 m3 n1 n2; do scp download-images.sh $i:~; done
然后让每个节点执行该脚本:
[root@m1 ~]# for i in m1 m2 m3 n1 n2; do ssh $i "sh ~/download-images.sh"; done
拉取完成后,此时各个节点应有如下镜像:
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
k8s.gcr.io/coredns 1.7.0 bfe3a36ebd25 2 months ago 45.2MB
k8s.gcr.io/pause-amd64 3.2 80d28bedfe5d 6 months ago 683kB
创建bootstrap配置文件
创建 token 并设置环境变量:
[root@m1 ~]# export BOOTSTRAP_TOKEN=$(kubeadm token create \
--description kubelet-bootstrap-token \
--groups system:bootstrappers:worker \
--kubeconfig kube.config)
创建kubelet-bootstrap.kubeconfig
:
# 设置集群参数
[root@m1 ~]# kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=https://192.168.243.101:6443 \
--kubeconfig=kubelet-bootstrap.kubeconfig
# 设置客户端认证参数
[root@m1 ~]# kubectl config set-credentials kubelet-bootstrap \
--token=${BOOTSTRAP_TOKEN} \
--kubeconfig=kubelet-bootstrap.kubeconfig
# 设置上下文参数
[root@m1 ~]# kubectl config set-context default \
--cluster=kubernetes \
--user=kubelet-bootstrap \
--kubeconfig=kubelet-bootstrap.kubeconfig
设置默认上下文:
[root@m1 ~]# kubectl config use-context default --kubeconfig=kubelet-bootstrap.kubeconfig
在worker节点上创建k8s配置文件存储目录并把生成的配置文件copy到每个worker
节点上:
[root@m1 ~]# for i in n1 n2; do ssh $i "mkdir /etc/kubernetes/"; done
[root@m1 ~]# for i in n1 n2; do scp kubelet-bootstrap.kubeconfig $i:/etc/kubernetes/kubelet-bootstrap.kubeconfig; done
在worker
节点上创建密钥存放目录:
[root@m1 ~]# for i in n1 n2; do ssh $i "mkdir -p /etc/kubernetes/pki"; done
把CA证书分发到每个worker
节点上:
[root@m1 ~]# for i in n1 n2; do scp ca.pem $i:/etc/kubernetes/pki/; done
kubelet配置文件
创建kubelet.config.json
配置文件,内容如下:
{
"kind": "KubeletConfiguration",
"apiVersion": "kubelet.config.k8s.io/v1beta1",
"authentication": {
"x509": {
"clientCAFile": "/etc/kubernetes/pki/ca.pem"
},
"webhook": {
"enabled": true,
"cacheTTL": "2m0s"
},
"anonymous": {
"enabled": false
}
},
"authorization": {
"mode": "Webhook",
"webhook": {
"cacheAuthorizedTTL": "5m0s",
"cacheUnauthorizedTTL": "30s"
}
},
"address": "192.168.243.146",
"port": 10250,
"readOnlyPort": 10255,
"cgroupDriver": "cgroupfs",
"hairpinMode": "promiscuous-bridge",
"serializeImagePulls": false,
"featureGates": {
"RotateKubeletClientCertificate": true,
"RotateKubeletServerCertificate": true
},
"clusterDomain": "cluster.local.",
"clusterDNS": ["10.255.0.2"]
}
把kubelet
配置文件分发到每个worker
节点上:
[root@m1 ~]# for i in n1 n2; do scp kubelet.config.json $i:/etc/kubernetes/; done
注意:分发完成后需要修改配置文件中的address
字段,改为所在节点的IP
kubelet服务文件
创建kubelet.service
文件,内容如下:
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=docker.service
Requires=docker.service
[Service]
WorkingDirectory=/var/lib/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \
--bootstrap-kubeconfig=/etc/kubernetes/kubelet-bootstrap.kubeconfig \
--cert-dir=/etc/kubernetes/pki \
--kubeconfig=/etc/kubernetes/kubelet.kubeconfig \
--config=/etc/kubernetes/kubelet.config.json \
--network-plugin=cni \
--pod-infra-container-image=k8s.gcr.io/pause-amd64:3.2 \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
把kubelet
的服务文件分发到每个worker
节点上
[root@m1 ~]# for i in n1 n2; do scp kubelet.service $i:/etc/systemd/system/; done
启动服务
kublet
启动时会查找 --kubeletconfig
参数配置的文件是否存在,如果不存在则使用 --bootstrap-kubeconfig
向 kube-apiserver 发送证书签名请求 (CSR)。
kube-apiserver 收到 CSR 请求后,对其中的 Token 进行认证(事先使用 kubeadm 创建的 token),认证通过后将请求的 user
设置为 system:bootstrap:
,group
设置为 system:bootstrappers
,这就是Bootstrap Token Auth。
bootstrap赋权,即创建一个角色绑定:
[root@m1 ~]# kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --group=system:bootstrappers
然后就可以启动kubelet
服务了,在每个worker
节点上执行如下命令:
$ mkdir -p /var/lib/kubelet
$ systemctl daemon-reload && systemctl enable kubelet && systemctl restart kubelet
查看服务状态,状态为active (running)
代表启动成功:
$ systemctl status kubelet
如果没有启动成功,可以查看日志排查下问题:
$ journalctl -f -u kubelet
确认kubelet
服务启动成功后,接着到master
上Approve一下bootstrap请求。执行如下命令可以看到两个worker
节点分别发送了两个 CSR 请求:
[root@m1 ~]# kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-0U6dO2MrD_KhUCdofq1rab6yrLvuVMJkAXicLldzENE 27s kubernetes.io/kube-apiserver-client-kubelet system:bootstrap:seh1w7 Pending
node-csr-QMAVx75MnxCpDT5QtI6liNZNfua39vOwYeUyiqTIuPg 74s kubernetes.io/kube-apiserver-client-kubelet system:bootstrap:seh1w7 Pending
[root@m1 ~]#
然后Approve这两个请求即可:
[root@m1 ~]# kubectl certificate approve node-csr-0U6dO2MrD_KhUCdofq1rab6yrLvuVMJkAXicLldzENE
certificatesigningrequest.certificates.k8s.io/node-csr-0U6dO2MrD_KhUCdofq1rab6yrLvuVMJkAXicLldzENE approved
[root@m1 ~]# kubectl certificate approve node-csr-QMAVx75MnxCpDT5QtI6liNZNfua39vOwYeUyiqTIuPg
certificatesigningrequest.certificates.k8s.io/node-csr-QMAVx75MnxCpDT5QtI6liNZNfua39vOwYeUyiqTIuPg approved
[root@m1 ~]#
部署kube-proxy(worker节点)
创建证书和私钥
创建 kube-proxy-csr.json
文件,内容如下:
{
"CN": "system:kube-proxy",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "seven"
}
]
}
生成证书和私钥:
[root@m1 ~]# cfssl gencert -ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
[root@m1 ~]# ls kube-proxy*.pem
kube-proxy-key.pem kube-proxy.pem
[root@m1 ~]#
创建和分发 kubeconfig 文件
执行如下命令创建kube-proxy.kubeconfig
文件:
# 设置集群参数
[root@m1 ~]# kubectl config set-cluster kubernetes \
--certificate-authority=ca.pem \
--embed-certs=true \
--server=https://192.168.243.101:6443 \
--kubeconfig=kube-proxy.kubeconfig
# 设置客户端认证参数
[root@m1 ~]# kubectl config set-credentials kube-proxy \
--client-certificate=kube-proxy.pem \
--client-key=kube-proxy-key.pem \
--embed-certs=true \
--kubeconfig=kube-proxy.kubeconfig
# 设置上下文参数
[root@m1 ~]# kubectl config set-context default \
--cluster=kubernetes \
--user=kube-proxy \
--kubeconfig=kube-proxy.kubeconfig
切换默认上下文:
[root@m1 ~]# kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
分发kube-proxy.kubeconfig
文件到各个worker
节点上:
[root@m1 ~]# for i in n1 n2; do scp kube-proxy.kubeconfig $i:/etc/kubernetes/; done
创建和分发kube-proxy配置文件
创建kube-proxy.config.yaml
文件,内容如下:
apiVersion: kubeproxy.config.k8s.io/v1alpha1
# 修改为所在节点的ip
bindAddress: {worker_ip}
clientConnection:
kubeconfig: /etc/kubernetes/kube-proxy.kubeconfig
clusterCIDR: 172.23.0.0/16
# 修改为所在节点的ip
healthzBindAddress: {worker_ip}:10256
kind: KubeProxyConfiguration
# 修改为所在节点的ip
metricsBindAddress: {worker_ip}:10249
mode: "iptables"
将kube-proxy.config.yaml
文件分发到每个worker
节点上:
[root@m1 ~]# for i in n1 n2; do scp kube-proxy.config.yaml $i:/etc/kubernetes/; done
创建和分发kube-proxy服务文件
创建kube-proxy.service
文件,内容如下:
[Unit]
Description=Kubernetes Kube-Proxy Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=network.target
[Service]
WorkingDirectory=/var/lib/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \
--config=/etc/kubernetes/kube-proxy.config.yaml \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2
Restart=on-failure
RestartSec=5
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
将kube-proxy.service
文件分发到所有worker
节点上:
[root@m1 ~]# for i in n1 n2; do scp kube-proxy.service $i:/etc/systemd/system/; done
启动服务
创建kube-proxy
服务所依赖的目录:
[root@m1 ~]# for i in n1 n2; do ssh $i "mkdir -p /var/lib/kube-proxy && mkdir -p /var/log/kubernetes"; done
然后就可以启动kube-proxy
服务了,在每个worker
节点上执行如下命令:
$ systemctl daemon-reload && systemctl enable kube-proxy && systemctl restart kube-proxy
查看服务状态,状态为active (running)
代表启动成功:
$ systemctl status kube-proxy
如果没有启动成功,可以查看日志排查下问题:
$ journalctl -f -u kube-proxy
部署CNI插件 - calico
我们使用calico官方的安装方式来部署。创建目录(在配置了kubectl
的节点上执行):
[root@m1 ~]# mkdir -p /etc/kubernetes/addons
在该目录下创建calico-rbac-kdd.yaml
文件,内容如下:
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: calico-node
rules:
- apiGroups: [""]
resources:
- namespaces
verbs:
- get
- list
- watch
- apiGroups: [""]
resources:
- pods/status
verbs:
- update
- apiGroups: [""]
resources:
- pods
verbs:
- get
- list
- watch
- patch
- apiGroups: [""]
resources:
- services
verbs:
- get
- apiGroups: [""]
resources:
- endpoints
verbs:
- get
- apiGroups: [""]
resources:
- nodes
verbs:
- get
- list
- update
- watch
- apiGroups: ["extensions"]
resources:
- networkpolicies
verbs:
- get
- list
- watch
- apiGroups: ["networking.k8s.io"]
resources:
- networkpolicies
verbs:
- watch
- list
- apiGroups: ["crd.projectcalico.org"]
resources:
- globalfelixconfigs
- felixconfigurations
- bgppeers
- globalbgpconfigs
- bgpconfigurations
- ippools
- globalnetworkpolicies
- globalnetworksets
- networkpolicies
- clusterinformations
- hostendpoints
verbs:
- create
- get
- list
- update
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: calico-node
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: calico-node
subjects:
- kind: ServiceAccount
name: calico-node
namespace: kube-system
然后分别执行如下命令完成calico
的安装:
[root@m1 ~]# kubectl apply -f /etc/kubernetes/addons/calico-rbac-kdd.yaml
[root@m1 ~]# kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml
等待几分钟后查看Pod状态,均为Running才代表部署成功:
[root@m1 ~]# kubectl get pod --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico-kube-controllers-5bc4fc6f5f-z8lhf 1/1 Running 0 105s
kube-system calico-node-qflvj 1/1 Running 0 105s
kube-system calico-node-x9m2n 1/1 Running 0 105s
[root@m1 ~]#
部署DNS插件 - coredns
在/etc/kubernetes/addons/
目录下创建coredns.yaml
配置文件:
apiVersion: v1
kind: ServiceAccount
metadata:
name: coredns
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:coredns
rules:
- apiGroups:
- ""
resources:
- endpoints
- services
- pods
- namespaces
verbs:
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:coredns
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:coredns
subjects:
- kind: ServiceAccount
name: coredns
namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
name: coredns
namespace: kube-system
data:
Corefile: |
.:53 {
errors
health {
lameduck 5s
}
ready
kubernetes cluster.local in-addr.arpa ip6.arpa {
fallthrough in-addr.arpa ip6.arpa
}
prometheus :9153
forward . /etc/resolv.conf {
max_concurrent 1000
}
cache 30
loop
reload
loadbalance
}
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: coredns
namespace: kube-system
labels:
k8s-app: kube-dns
kubernetes.io/name: "CoreDNS"
spec:
# replicas: not specified here:
# 1. Default is 1.
# 2. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
selector:
matchLabels:
k8s-app: kube-dns
template:
metadata:
labels:
k8s-app: kube-dns
spec:
priorityClassName: system-cluster-critical
serviceAccountName: coredns
tolerations:
- key: "CriticalAddonsOnly"
operator: "Exists"
nodeSelector:
kubernetes.io/os: linux
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: k8s-app
operator: In
values: ["kube-dns"]
topologyKey: kubernetes.io/hostname
containers:
- name: coredns
image: coredns/coredns:1.7.0
imagePullPolicy: IfNotPresent
resources:
limits:
memory: 170Mi
requests:
cpu: 100m
memory: 70Mi
args: [ "-conf", "/etc/coredns/Corefile" ]
volumeMounts:
- name: config-volume
mountPath: /etc/coredns
readOnly: true
ports:
- containerPort: 53
name: dns
protocol: UDP
- containerPort: 53
name: dns-tcp
protocol: TCP
- containerPort: 9153
name: metrics
protocol: TCP
securityContext:
allowPrivilegeEscalation: false
capabilities:
add:
- NET_BIND_SERVICE
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 8080
scheme: HTTP
initialDelaySeconds: 60
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5
readinessProbe:
httpGet:
path: /ready
port: 8181
scheme: HTTP
dnsPolicy: Default
volumes:
- name: config-volume
configMap:
name: coredns
items:
- key: Corefile
path: Corefile
---
apiVersion: v1
kind: Service
metadata:
name: kube-dns
namespace: kube-system
annotations:
prometheus.io/port: "9153"
prometheus.io/scrape: "true"
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
kubernetes.io/name: "CoreDNS"
spec:
selector:
k8s-app: kube-dns
clusterIP: 10.255.0.2
ports:
- name: dns
port: 53
protocol: UDP
- name: dns-tcp
port: 53
protocol: TCP
- name: metrics
port: 9153
protocol: TCP
-
Tips:该文件是使用官方的deploy.sh脚本生成的,执行该脚本时需使用
-i
参数指定dns的clusterIP
,通常为kubernetes服务ip网段的第二个,ip相关的定义在本文开头有说明
然后执行如下命令部署coredns
:
[root@m1 ~]# kubectl create -f /etc/kubernetes/addons/coredns.yaml
serviceaccount/coredns created
clusterrole.rbac.authorization.k8s.io/system:coredns created
clusterrolebinding.rbac.authorization.k8s.io/system:coredns created
configmap/coredns created
deployment.apps/coredns created
service/kube-dns created
[root@m1 ~]#
查看Pod状态:
[root@m1 ~]# kubectl get pod --all-namespaces | grep coredns
kube-system coredns-7bf4bd64bd-ww4q2 1/1 Running 0 3m40s
[root@m1 ~]#
查看集群中的节点状态:
[root@m1 ~]# kubectl get node
NAME STATUS ROLES AGE VERSION
n1 Ready <none> 3h30m v1.19.0
n2 Ready <none> 3h30m v1.19.0
[root@m1 ~]#
集群可用性测试
创建nginx ds
在m1
节点上创建nginx-ds.yml
配置文件,内容如下:
apiVersion: v1
kind: Service
metadata:
name: nginx-ds
labels:
app: nginx-ds
spec:
type: NodePort
selector:
app: nginx-ds
ports:
- name: http
port: 80
targetPort: 80
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: nginx-ds
labels:
addonmanager.kubernetes.io/mode: Reconcile
spec:
selector:
matchLabels:
app: nginx-ds
template:
metadata:
labels:
app: nginx-ds
spec:
containers:
- name: my-nginx
image: nginx:1.7.9
ports:
- containerPort: 80
然后执行如下命令创建nginx ds:
[root@m1 ~]# kubectl create -f nginx-ds.yml
service/nginx-ds created
daemonset.apps/nginx-ds created
[root@m1 ~]#
检查各种ip连通性
稍等一会后,检查Pod状态是否正常:
[root@m1 ~]# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-ds-4f48f 1/1 Running 0 63s 172.16.40.130 n1 <none> <none>
nginx-ds-zsm7d 1/1 Running 0 63s 172.16.217.10 n2 <none> <none>
[root@m1 ~]#
在每个worker
节点上去尝试ping
Pod IP(master
节点没有安装calico
所以不能访问Pod IP):
[root@n1 ~]# ping 172.16.40.130
PING 172.16.40.130 (172.16.40.130) 56(84) bytes of data.
64 bytes from 172.16.40.130: icmp_seq=1 ttl=64 time=0.073 ms
64 bytes from 172.16.40.130: icmp_seq=2 ttl=64 time=0.055 ms
64 bytes from 172.16.40.130: icmp_seq=3 ttl=64 time=0.052 ms
64 bytes from 172.16.40.130: icmp_seq=4 ttl=64 time=0.054 ms
^C
--- 172.16.40.130 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.052/0.058/0.073/0.011 ms
[root@n1 ~]#
确认Pod IP能够ping
通后,检查Service的状态:
[root@m1 ~]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.255.0.1 <none> 443/TCP 17h
nginx-ds NodePort 10.255.4.100 <none> 80:8568/TCP 11m
[root@m1 ~]#
在每个worker
节点上尝试访问nginx-ds
服务(master
节点没有proxy所以不能访问Service IP):
[root@n1 ~]# curl 10.255.4.100:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
[root@n1 ~]#
在每个节点上检查NodePort的可用性,NodePort会将服务的端口与宿主机的端口做映射,正常情况下所有节点都可以通过worker
节点的 IP + NodePort 访问到nginx-ds
服务:
$ curl 192.168.243.146:8568
$ curl 192.168.243.147:8568
检查dns可用性
需要创建一个Nginx Pod,首先定义一个pod-nginx.yaml
配置文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80
然后基于该配置文件去创建Pod:
[root@m1 ~]# kubectl create -f pod-nginx.yaml
pod/nginx created
[root@m1 ~]#
使用如下命令进入到Pod里:
[root@m1 ~]# kubectl exec nginx -i -t -- /bin/bash
查看dns配置,nameserver
的值需为 coredns 的clusterIP
:
root@nginx:/# cat /etc/resolv.conf
nameserver 10.255.0.2
search default.svc.cluster.local. svc.cluster.local. cluster.local. localdomain
options ndots:5
root@nginx:/#
接着测试是否可以正确解析Service的名称。如下能根据nginx-ds
这个名称解析出对应的IP:10.255.4.100
,代表dns也是正常的:
root@nginx:/# ping nginx-ds
PING nginx-ds.default.svc.cluster.local (10.255.4.100): 48 data bytes
kubernetes
服务也能正常解析:
root@nginx:/# ping kubernetes
PING kubernetes.default.svc.cluster.local (10.255.0.1): 48 data bytes
高可用测试
将m1
节点上的kubectl
配置文件拷贝到其他两台master
节点上:
[root@m1 ~]# for i in m2 m3; do ssh $i "mkdir ~/.kube/"; done
[root@m1 ~]# for i in m2 m3; do scp ~/.kube/config $i:~/.kube/; done
到m1
节点上执行如下命令将其关机:
[root@m1 ~]# init 0
然后查看虚拟IP是否成功漂移到了m2
节点上:
[root@m2 ~]# ip a |grep 192.168.243.101
inet 192.168.243.101/32 scope global ens32
[root@m2 ~]#
接着测试能否在m2
或m3
节点上使用kubectl
与集群进行交互,能正常交互则代表集群已经具备了高可用:
[root@m2 ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
n1 Ready <none> 4h2m v1.19.0
n2 Ready <none> 4h2m v1.19.0
[root@m2 ~]#
部署dashboard
dashboard是k8s提供的一个可视化操作界面,用于简化我们对集群的操作和管理,在界面上我们可以很方便的查看各种信息、操作Pod、Service等资源,以及创建新的资源等。dashboard的仓库地址如下,
dashboard的部署也比较简单,首先定义dashboard-all.yaml
配置文件,内容如下:
apiVersion: v1
kind: Namespace
metadata:
name: kubernetes-dashboard
---
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
---
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
spec:
ports:
- port: 443
targetPort: 8443
nodePort: 8523
type: NodePort
selector:
k8s-app: kubernetes-dashboard
---
apiVersion: v1
kind: Secret
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard-certs
namespace: kubernetes-dashboard
type: Opaque
---
apiVersion: v1
kind: Secret
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard-csrf
namespace: kubernetes-dashboard
type: Opaque
data:
csrf: ""
---
apiVersion: v1
kind: Secret
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard-key-holder
namespace: kubernetes-dashboard
type: Opaque
---
kind: ConfigMap
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard-settings
namespace: kubernetes-dashboard
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
rules:
# Allow Dashboard to get, update and delete Dashboard exclusive secrets.
- apiGroups: [""]
resources: ["secrets"]
resourceNames: ["kubernetes-dashboard-key-holder", "kubernetes-dashboard-certs", "kubernetes-dashboard-csrf"]
verbs: ["get", "update", "delete"]
# Allow Dashboard to get and update 'kubernetes-dashboard-settings' config map.
- apiGroups: [""]
resources: ["configmaps"]
resourceNames: ["kubernetes-dashboard-settings"]
verbs: ["get", "update"]
# Allow Dashboard to get metrics.
- apiGroups: [""]
resources: ["services"]
resourceNames: ["heapster", "dashboard-metrics-scraper"]
verbs: ["proxy"]
- apiGroups: [""]
resources: ["services/proxy"]
resourceNames: ["heapster", "http:heapster:", "https:heapster:", "dashboard-metrics-scraper", "http:dashboard-metrics-scraper"]
verbs: ["get"]
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
rules:
# Allow Metrics Scraper to get metrics from the Metrics server
- apiGroups: ["metrics.k8s.io"]
resources: ["pods", "nodes"]
verbs: ["get", "list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: kubernetes-dashboard
subjects:
- kind: ServiceAccount
name: kubernetes-dashboard
namespace: kubernetes-dashboard
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kubernetes-dashboard
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kubernetes-dashboard
subjects:
- kind: ServiceAccount
name: kubernetes-dashboard
namespace: kubernetes-dashboard
---
kind: Deployment
apiVersion: apps/v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
spec:
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
k8s-app: kubernetes-dashboard
template:
metadata:
labels:
k8s-app: kubernetes-dashboard
spec:
containers:
- name: kubernetes-dashboard
image: kubernetesui/dashboard:v2.0.3
imagePullPolicy: Always
ports:
- containerPort: 8443
protocol: TCP
args:
- --auto-generate-certificates
- --namespace=kubernetes-dashboard
# Uncomment the following line to manually specify Kubernetes API server Host
# If not specified, Dashboard will attempt to auto discover the API server and connect
# to it. Uncomment only if the default does not work.
# - --apiserver-host=http://my-address:port
volumeMounts:
- name: kubernetes-dashboard-certs
mountPath: /certs
# Create on-disk volume to store exec logs
- mountPath: /tmp
name: tmp-volume
livenessProbe:
httpGet:
scheme: HTTPS
path: /
port: 8443
initialDelaySeconds: 30
timeoutSeconds: 30
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
runAsUser: 1001
runAsGroup: 2001
volumes:
- name: kubernetes-dashboard-certs
secret:
secretName: kubernetes-dashboard-certs
- name: tmp-volume
emptyDir: {}
serviceAccountName: kubernetes-dashboard
nodeSelector:
"kubernetes.io/os": linux
# Comment the following tolerations if Dashboard must not be deployed on master
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
---
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: dashboard-metrics-scraper
name: dashboard-metrics-scraper
namespace: kubernetes-dashboard
spec:
ports:
- port: 8000
targetPort: 8000
selector:
k8s-app: dashboard-metrics-scraper
---
kind: Deployment
apiVersion: apps/v1
metadata:
labels:
k8s-app: dashboard-metrics-scraper
name: dashboard-metrics-scraper
namespace: kubernetes-dashboard
spec:
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
k8s-app: dashboard-metrics-scraper
template:
metadata:
labels:
k8s-app: dashboard-metrics-scraper
annotations:
seccomp.security.alpha.kubernetes.io/pod: 'runtime/default'
spec:
containers:
- name: dashboard-metrics-scraper
image: kubernetesui/metrics-scraper:v1.0.4
ports:
- containerPort: 8000
protocol: TCP
livenessProbe:
httpGet:
scheme: HTTP
path: /
port: 8000
initialDelaySeconds: 30
timeoutSeconds: 30
volumeMounts:
- mountPath: /tmp
name: tmp-volume
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
runAsUser: 1001
runAsGroup: 2001
serviceAccountName: kubernetes-dashboard
nodeSelector:
"kubernetes.io/os": linux
# Comment the following tolerations if Dashboard must not be deployed on master
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
volumes:
- name: tmp-volume
emptyDir: {}
创建dashboard服务:
[root@m1 ~]# kubectl create -f dashboard-all.yaml
namespace/kubernetes-dashboard created
serviceaccount/kubernetes-dashboard created
service/kubernetes-dashboard created
secret/kubernetes-dashboard-certs created
secret/kubernetes-dashboard-csrf created
secret/kubernetes-dashboard-key-holder created
configmap/kubernetes-dashboard-settings created
role.rbac.authorization.k8s.io/kubernetes-dashboard created
clusterrole.rbac.authorization.k8s.io/kubernetes-dashboard created
rolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created
clusterrolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created
deployment.apps/kubernetes-dashboard created
service/dashboard-metrics-scraper created
deployment.apps/dashboard-metrics-scraper created
[root@m1 ~]#
查看deployment
运行情况:
[root@m1 ~]# kubectl get deployment kubernetes-dashboard -n kubernetes-dashboard
NAME READY UP-TO-DATE AVAILABLE AGE
kubernetes-dashboard 1/1 1 1 20s
[root@m1 ~]#
查看dashboard pod运行情况:
[root@m1 ~]# kubectl --namespace kubernetes-dashboard get pods -o wide |grep dashboard
dashboard-metrics-scraper-7b59f7d4df-xzxs8 1/1 Running 0 82s 172.16.217.13 n2 <none> <none>
kubernetes-dashboard-5dbf55bd9d-s8rhb 1/1 Running 0 82s 172.16.40.132 n1 <none> <none>
[root@m1 ~]#
查看dashboard service的运行情况:
[root@m1 ~]# kubectl get services kubernetes-dashboard -n kubernetes-dashboard
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes-dashboard NodePort 10.255.120.138 <none> 443:8523/TCP 101s
[root@m1 ~]#
到n1
节点上查看8523
端口是否有被正常监听:
[root@n1 ~]# netstat -ntlp |grep 8523
tcp 0 0 0.0.0.0:8523 0.0.0.0:* LISTEN 13230/kube-proxy
[root@n1 ~]#
访问dashboard
为了集群安全,从 1.7 开始,dashboard 只允许通过 https 访问,我们使用NodePort的方式暴露服务,可以使用 https://NodeIP:NodePort 地址访问。例如使用curl
进行访问:
[root@n1 ~]# curl https://192.168.243.146:8523 -k
<!--
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Kubernetes Dashboard</title>
<link rel="icon"
type="image/png"
href="assets/images/kubernetes-logo.png" />
<meta name="viewport"
content="width=device-width">
<link rel="stylesheet" href="styles.988f26601cdcb14da469.css"></head>
<body>
<kd-root></kd-root>
<script src="runtime.ddfec48137b0abfd678a.js" defer></script><script src="polyfills-es5.d57fe778f4588e63cc5c.js" nomodule defer></script><script src="polyfills.49104fe38e0ae7955ebb.js" defer></script><script src="scripts.391d299173602e261418.js" defer></script><script src="main.b94e335c0d02b12e3a7b.js" defer></script></body>
</html>
[root@n1 ~]#
- 由于dashboard的证书是自签的,所以这里需要加
-k
参数指定不验证证书进行https请求
关于自定义证书
默认dashboard的证书是自动生成的,肯定是非安全的证书,如果大家有域名和对应的安全证书可以自己替换掉。使用安全的域名方式访问dashboard。
在dashboard-all.yaml
中增加dashboard启动参数,可以指定证书文件,其中证书文件是通过secret注进来的。
- --tls-cert-file=dashboard.cer
- --tls-key-file=dashboard.key
登录dashboard
Dashboard 默认只支持 token 认证,所以如果使用 KubeConfig 文件,需要在该文件中指定 token,我们这里使用token的方式登录。
首先创建service account:
[root@m1 ~]# kubectl create sa dashboard-admin -n kube-system
serviceaccount/dashboard-admin created
[root@m1 ~]#
创建角色绑定关系:
[root@m1 ~]# kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
clusterrolebinding.rbac.authorization.k8s.io/dashboard-admin created
[root@m1 ~]#
查看dashboard-admin
的Secret名称:
[root@m1 ~]# kubectl get secrets -n kube-system | grep dashboard-admin | awk '{print $1}'
dashboard-admin-token-757fb
[root@m1 ~]#
打印Secret的token:
[root@m1 ~]# ADMIN_SECRET=$(kubectl get secrets -n kube-system | grep dashboard-admin | awk '{print $1}')
[root@m1 ~]# kubectl describe secret -n kube-system ${ADMIN_SECRET} | grep -E '^token' | awk '{print $2}'
eyJhbGciOiJSUzI1NiIsImtpZCI6Ilhyci13eDR3TUtmSG9kcXJxdzVmcFdBTFBGeDhrOUY2QlZoenZhQWVZM0EifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtYWRtaW4tdG9rZW4tNzU3ZmIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkLWFkbWluIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiYjdlMWVhMzQtMjNhMS00MjZkLWI0NTktOGI2NmQxZWZjMWUzIiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZC1hZG1pbiJ9.UlKmcZoGb6OQ1jE55oShAA2dBiL0FHEcIADCfTogtBEuYLPdJtBUVQZ_aVICGI23gugIu6Y9Yt7iQYlwT6zExhUzDz0UUiBT1nSLe94CkPl64LXbeWkC3w2jee8iSqR2UfIZ4fzY6azaqhGKE1Fmm_DLjD-BS-etphOIFoCQFbabuFjvR8DVDss0z1czhHwXEOvlv5ted00t50dzv0rAZ8JN-PdOoem3aDkXDvWWmqu31QAhqK1strQspbUOF5cgcSeGwsQMfau8U5BNsm_K92IremHqOVvOinkR_EHslomDJRc3FYbV_Jw359rc-QROSTbLphRfvGNx9UANDMo8lA
[root@m1 ~]#
获取到token后,使用浏览器访问https://192.168.243.146:8523
,由于是dashboard是自签的证书,所以此时浏览器会提示警告。不用理会直接点击“高级” -> “继续前往”即可:
然后输入token:
成功登录后首页如下:
可视化界面也没啥可说的,这里就不进一步介绍了,可以自行探索一下。我们使用二进制方式搭建高可用的k8s集群之旅至此就结束了,本文篇幅可以说是非常的长,这也是为了记录每一步的操作细节,所以为了方便还是使用kubeadm
吧。