【案例分析】解决用户流失问题,数据挖掘工具怎么施招?

导读:地久天长的爱情故事总是让人向往,但分手总是来的让人不知所措。如果我能早点知道你为何对我不满,会不会没有走到尽头的一天?同样的戏码也总是发生在企业和用户的身上,如何早知端倪并采取挽回措施,且往下看。

背景与问题

某运营商的用户在使用该公司提供的某套餐过程中,可能因为价格、服务等等各种原因选择继续使用或停用该套餐。对该运营商来讲,如果能够提前预测到哪些用户可能会流失,并找到用户对该套餐不满的原因,进行适当调整,便能最大程度将用户挽回。运营商提供了该套餐的用户数据,希望能预测客户是否会流失。

客户是否会流失的信息很可能隐含在他的通话时间、短信使用、消费情况等信息中。


数据挖掘平台iCloudUnion利用自带的算子快速建立起流失客户的预测模型,帮助运营商根据历史数据分析用户是否会继续使用该套餐,并有针对性地采取挽回措施。

解决方案

在该案例中,客户分为在网客户和流失客户两类,预测客户是否流失为一个分类问题,可尝试选用决策树、随机森林、迭代决策树等分类算法,根据分类效果确定最终模型。

主要分成两个步骤:

第一步:训练和测试分类模型,预测客户是否流失。

第二步:在该套餐数据其他时间段的新数据集上检验训练出的模型效果(训练用了3个月数据,新数据为其他的1年左右的数据)。

第一步:训练和测试分类模型


训练分类模型

上图所示工作流主要分为数据切分、训练分类模型、利用模型分类这几个步骤。

数据切分

在网客户数据量为10万条,流失客户数据量为1万7千条,考虑将在网客户数据三等分(SplitDataByPercent算子),流失客户数据二等分(SplitDataByPercent算子),互相融合(Union算子)形成3份数据(每份数据包含约33000条在网数据和8800条流失数据)。

训练分类模型

用三组数据分别训练出一个决策树分类模型。

利用模型分类

将三个模型和三组数据交叉验证进行分类,可以防止模型过拟合。

输出的结果我们可以双击PerformanceClassification的右端View接口看到,可以对比各个模型的分类效果。

同理,可以构建随机森林和GBDT的分类工作流,经过对比发现GBDT的分类效果最好,具体结果如下表所示。

表1模型测试结果对比


GBDT的混淆矩阵如下图所示:


图8 GBDT模型应用所得的混淆矩阵

第二步:在该套餐数据其他时间段的新数据集上检验训练出的模型效果


多模型应用效果检验

读取和合并新数据,并用三个保存的模型进行分类,同样双击View可以查看分类效果,具体如下表所示:

表2在新数据上的模型测试结果对比



图10 在新数据上GBDT模型应用所得的混淆矩阵

在新数据上测试结果:在网用户预测正确率99.05%,流失用户预测正确率88.39%。

实施效果

此案例中,我们通过训练的GBDT分类模型可以非常精确(97.45%)地辨别出某用户是否会流失。

用户基于此模型来针对性地设计客户反馈方案,对易流失客户进行访问和分析,从而提高服务质量和业务水平。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容