【科普】拉姆齐定理RamseyTheory-2

欢迎关注我的专栏( つ•̀ω•́)つ【人工智能通识】
【科普】拉姆齐定理RamseyTheory-1


鸽笼原理Pigeonhole Principle

鸽笼原理也称作盒子原理Box Principle或抽屉原理Draw Principle。

简而言之就是将N+1只鸽子放入N个笼子,必然有一个笼子里的鸽子不止一只。

数学表示就是,如果要把km+1个对象放到m个盒子里,则至少有一个盒子里的对象不少于k+1只。

范德瓦尔登定理Van der Waerden Theorem

以荷兰数学家BL van der Waerden的名字命名的范德瓦尔登定理,描述的是:

对于1,2,3,4...n数字序列,如果随机把每个数字染上r种颜色,那么一定有k个颜色相同的数字形成等差数列。

如图所示,共n=8个数字,r=2种颜色,如果我们添加第9个数字是红色的,那么3、6、9这三个红色数字(k=3)形成等差数列,如果我们添加第9个数字是蓝色的,那么1、5、9三个蓝色数字(k=3)形成等差数列。

所以,范德瓦尔登数字计作W(2,3)=9,就是在2种颜色情况下形成3连等差的最少是9个数字。

黑尔斯-朱厄特定理Hales–Jewett theorem

tic-tac-teo是个极简单游戏,圆圈和叉叉两方,如果谁先竖向3个或者横向3个或者斜向45度3个连成一条线,那么就获胜。如图中叉叉右斜45度连成一条线获胜。

这个图可以换成数字坐标版本:


我们从上图可以发现,横向11,12,13可以获胜,竖向13,23,33可以获胜,这两种横竖获胜的三个数字中都有一位是相同的,比如13,23,33中第二位都是3.

斜线获胜额是11,22,33和13,22,31,对这种情况的规律是每一位数字都不同,比如13,22,31第一位是1-,2-,3-,第二位是-3,-2,-1。

这是二维坐标的情况,当然可以变成3维坐标或者4维坐标甚至更多(超级立方体)。

对于这个图,如果交互第一排第二个圈和第三个叉,那么就是平局。但是黑尔斯-朱厄特定理指出,当维度达到8的时候(就是每个位置需要8个数字表示),将不可能出现平局,也就是一定会有一方无可避免的连3个成一线。

黑尔斯-朱厄特定理的核心哲学就是没有绝对的随机,当随机达到一定程度的时候就必然出现带有规律的局部特征。

小结

局部有序是随机的必然,有序和随机是辩证统一的。所以生命并不是宇宙的偶然,而是大量随机所产生的必然结果。

这带给我们以下问题:

  • 有序的内容并不一定能加速熵增(无序),而生命的消耗一定能促进熵增。
  • 那么,有序和生命的界限在哪里?
  • 宇宙的目的是墒增(随机),还是生命(局部有序的熵减)?
  • 随机产生复杂有序的机制是怎样的?

欢迎关注我的专栏( つ•̀ω•́)つ【人工智能通识】


每个人的智能新时代

如果您发现文章错误,请不吝留言指正;
如果您觉得有用,请点喜欢;
如果您觉得很有用,欢迎转载~


END

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355