118,GCD的详细理解(同步执行(sync)和异步执行(async)两者的区别是否等待队列的任务执行结束,以及是否具备开启新线程的能力,同步在指定的队列中,添加的任务执行结束之前,会一直等待,...

1. GCD 任务和队列

学习 GCD 之前,先来了解 GCD 中两个核心概念:『任务』 和 『队列』。
任务:就是执行操作的意思,换句话说就是你在线程中执行的那段代码。在 GCD 中是放在 block 中的。执行任务有两种方式:『同步执行』 和 『异步执行』。两者的主要区别是:是否等待队列的任务执行结束,以及是否具备开启新线程的能力。

  • 同步执行(sync):
    1.同步添加任务到指定的队列中,在添加的任务执行结束之前,会一直等待,直到队列里面的任务完成之后再继续执行。
    2.只能在当前线程中执行任务,不具备开启新线程的能力
  • 异步执行(async):
    1.异步添加任务到指定的队列中,它不会做任何等待,可以继续执行任务
    2.可以在新的线程中执行任务,具备开启新线程的能力

举个简单例子:你要打电话给小明和小白。
『同步执行』 就是:你打电话给小明的时候,不能同时打给小白。只有等到给小明打完了,才能打给小白(等待任务执行结束)。而且只能用当前的电话(不具备开启新线程的能力)。
『异步执行』 就是:你打电话给小明的时候,不用等着和小明通话结束(不用等待任务执行结束),还能同时给小白打电话。而且除了当前电话,你还可以使用其他一个或多个电话(具备开启新线程的能力)

注意:异步执行(async)虽然具有开启新线程的能力,但是并不一定开启新线程。这跟任务所指定的队列类型有关(下面会讲)。

队列(Dispatch Queue):这里的队列指执行任务的等待队列,即用来存放任务的队列。队列是一种特殊的线性表,采用 FIFO(先进先出)的原则,即新任务总是被插入到队列的末尾,而读取任务的时候总是从队列的头部开始读取。每读取一个任务,则从队列中释放一个任务。队列的结构可参考下图:

image.png

在 GCD 中有两种队列:『串行队列』『并发队列』。两者都符合 FIFO(先进先出)的原则。两者的主要区别是:执行顺序不同,以及开启线程数不同

  • 串行队列(Serial Dispatch Queue)
    每次只有一个任务被执行。让任务一个接着一个地执行。(只开启一个线程,一个任务执行完毕后,再执行下一个任务)
  • 并发队列(Concurrent Dispatch Queue):
    可以让多个任务并发(同时)执行。(可以开启多个线程,并且同时执行任务)

注意:并发队列 的并发功能只有在异步(dispatch_async)方法下才有效。

两者具体区别如下两图所示:


image.png
image.png

3. GCD 的使用步骤

截屏2020-11-11 上午9.51.02的副本.png

这个NULL 表示之前的DISPATCH_QUEUE_SERIAL

注意:添加几个任务并不是创建几个线程

截屏2020-11-25 下午1.46.55.png
截屏2020-11-25 下午1.56.12.png

GCD 的使用步骤其实很简单,只有两步:

  1. 创建一个队列(串行队列或并发队列);
  2. 将任务追加到任务的等待队列中,然后系统就会根据任务类型执行任务(同步执行或异步执行)。

下边来看看队列的创建方法 / 获取方法,以及任务的创建方法。

  • 可以使用 dispatch_queue_create 方法来创建队列。该方法需要传入两个参数:
    1.第一个参数表示队列的唯一标识符,用于 DEBUG,可为空。队列的名称推荐使用应用程序 ID 这种逆序全程域名。
    2.第二个参数用来识别是串行队列还是并发队列。DISPATCH_QUEUE_SERIAL 表示串行队列,DISPATCH_QUEUE_CONCURRENT 表示并发队列。
// 串行队列的创建方法
dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_SERIAL);
// 并发队列的创建方法
dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_CONCURRENT);
  • 对于串行队列,GCD 默认提供了:『主队列(Main Dispatch Queue)』
    1. 所有放在主队列中的任务,都会放到主线程中执行。
    2. 可使用 dispatch_get_main_queue() 方法获得主队列

注意:主队列其实并不特殊。 主队列的实质上就是一个普通的串行队列,只是因为默认情况下,当前代码是放在主队列中的,然后主队列中的代码,有都会放到主线程中去执行,所以才造成了主队列特殊的现象。

// 主队列的获取方法
dispatch_queue_t queue = dispatch_get_main_queue();
  • 对于并发队列,GCD 默认提供了 『全局并发队列(Global Dispatch Queue)』
    1.可以使用 dispatch_get_global_queue 方法来获取全局并发队列。需要传入两个参数。第一个参数表示队列优先级,一般用 DISPATCH_QUEUE_PRIORITY_DEFAULT。第二个参数暂时没用,用 0 即可。
// 全局并发队列的获取方法
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

3.2 任务的创建方法

GCD 提供了同步执行任务的创建方法 dispatch_sync 和异步执行任务创建方法 dispatch_async

// 同步执行任务创建方法
dispatch_sync(queue, ^{
    // 这里放同步执行任务代码
});
// 异步执行任务创建方法
dispatch_async(queue, ^{
    // 这里放异步执行任务代码
});

虽然使用 GCD 只需两步,但是既然我们有两种队列(串行队列 / 并发队列),两种任务执行方式(同步执行 / 异步执行),那么我们就有了四种不同的组合方式。这四种不同的组合方式是:

1.同步执行 + 并发队列
2.异步执行 + 并发队列
3.同步执行 + 串行队列
4.异步执行 + 串行队列

实际上,刚才还说了两种默认队列:全局并发队列、主队列。全局并发队列可以作为普通并发队列来使用。但是当前代码默认放在主队列中,所以主队列很有必要专门来研究一下,所以我们就又多了两种组合方式。这样就有六种不同的组合方式了。

5.同步执行 + 主队列
6.异步执行 + 主队列

那么这几种不同组合方式各有什么区别呢?

3.3 任务和队列不同组合方式的区别

我们先来考虑最基本的使用,也就是当前线程为 『主线程』 的环境下,『不同队列』+『不同任务』 简单组合使用的不同区别。暂时不考虑 『队列中嵌套队列』 的这种复杂情况。

区别 并发队列 串行队列 主队列
同步(sync) 没有开启新线程,串行执行任务 没有开启新线程,串行执行任务 死锁卡住不执行
异步(async 有开启新线程,并发执行任务 有开启新线程(1条),串行执行任务 没有开启新线程,串行执行任务

注意:从上边可看出: 『主线程』 中调用 『主队列』+『同步执行』 会导致死锁问题。
这是因为 主队列中追加的同步任务 和 主线程本身的任务 两者之间相互等待,阻塞了 『主队列』,最终造成了主队列所在的线程(主线程)死锁问题。
而如果我们在 『其他线程』 调用 『主队列』+『同步执行』,则不会阻塞 『主队列』,自然也不会造成死锁问题。最终的结果是:不会开启新线程,串行执行任务。

3.4 队列嵌套情况下,不同组合方式区别

除了上边提到的『主线程』中调用『主队列』+『同步执行』会导致死锁问题。实际在使用『串行队列』的时候,也可能出现阻塞『串行队列』所在线程的情况发生,从而造成死锁问题。这种情况多见于同一个串行队列的嵌套使用。

比如下面代码这样:在『异步执行』+『串行队列』的任务中,又嵌套了『当前的串行队列』,然后进行『同步执行』。

dispatch_queue_t queue = dispatch_queue_create("test.queue", DISPATCH_QUEUE_SERIAL);
dispatch_async(queue, ^{    // 异步执行 + 串行队列
    dispatch_sync(queue, ^{  // 同步执行 + 当前串行队列
        // 追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
    });
});

执行上面的代码会导致 串行队列中追加的任务 和 串行队列中原有的任务 两者之间相互等待,阻塞了『串行队列』,最终造成了串行队列所在的线程(子线程)死锁问题。
主队列造成死锁也是基于这个原因,所以,这也进一步说明了主队列其实并不特殊。

关于 『队列中嵌套队列』这种复杂情况,这里也简单做一个总结。不过这里只考虑同一个队列的嵌套情况,关于多个队列的相互嵌套情况还请自行研究,或者等我最新的文章发布。

『不同队列』+『不同任务』 组合,以及 『队列中嵌套队列』 使用的区别:

区别 『异步执行+并发队列』嵌套『同一个并发队列』 『同步执行+并发队列』嵌套『同一个并发队列』 『异步执行+串行队列』嵌套『同一个串行队列』 『同步执行+串行队列』嵌套『同一个串行队列』
同步(sync) 没有开启新的线程,串行执行任务 没有开启新线程,串行执行任务 死锁卡住不执行 死锁卡住不执行
异步(async 有开启新线程,并发执行任务 有开启新线程,并发执行任务 有开启新线程(1 条),串行执行任务 有开启新线程(1 条),串行执行任务

3.5 关于不同队列和不同任务的形象理解

因为前一段时间看到了有朋友留言说对 异步执行并发队列 中创建线程能力有所不理解,我觉得这个问题的确很容易造成困惑,所以很值得拿来专门分析一下。

他的问题:
在 异步 + 并发 中的解释:
(异步执行具备开启新线程的能力。且并发队列可开启多个线程,同时执行多个任务)
以及 同步 + 并发 中的解释:
(虽然并发队列可以开启多个线程,并且同时执行多个任务。但是因为本身不能创建新线程,只有当前线程这一个线程(同步任务不具备开启新线程的能力)
这个地方看起来有点疑惑,你两个地方分别提到:异步执行开启新线程,并发队列也可以开启新线程,想请教下,你的意思是只有任务才拥有创建新线程的能力,而队列只有开启线程的能力,并不能创建线程 ?这二者是这样的关联吗?

关于这个问题,我想做一个很形象的类比,来帮助大家对 队列、任务 以及 线程 之间关系的理解。

假设现在有 5 个人要穿过一道门禁,这道门禁总共有 10 个入口,管理员可以决定同一时间打开几个入口,可以决定同一时间让一个人单独通过还是多个人一起通过。不过默认情况下,管理员只开启一个入口,且一个通道一次只能通过一个人。
这个故事里,人好比是 任务,管理员好比是 系统,入口则代表 线程。
5 个人表示有 5 个任务,10 个入口代表 10 条线程。
串行队列 好比是 5 个人排成一支长队。
并发队列 好比是 5 个人排成多支队伍,比如 2 队,或者 3 队。
同步任务 好比是管理员只开启了一个入口(当前线程)。
异步任务 好比是管理员同时开启了多个入口(当前线程 + 新开的线程)。
『异步执行 + 并发队列』 可以理解为:现在管理员开启了多个入口(比如 3 个入口),5 个人排成了多支队伍(比如 3 支队伍),这样这 5 个人就可以 3 个人同时一起穿过门禁了。
『同步执行 + 并发队列』 可以理解为:现在管理员只开启了 1 个入口,5 个人排成了多支队伍。虽然这 5 个人排成了多支队伍,但是只开了 1 个入口啊,这 5 个人虽然都想快点过去,但是 1 个入口一次只能过 1 个人,所以大家就只好一个接一个走过去了,表现的结果就是:顺次通过入口。

换成 GCD 里的语言就是说:

『异步执行 + 并发队列』就是:系统开启了多个线程(主线程+其他子线程),任务可以多个同时运行。
『同步执行 + 并发队列』就是:系统只默认开启了一个主线程,没有开启子线程,虽然任务处于并发队列中,但也只能一个接一个执行了。

4. GCD 的基本使用

先来讲讲并发队列的两种执行方式。
4.1 同步执行 + 并发队列
  • 在当前线程中执行任务,不会开启新线程,执行完一个任务,再执行下一个任务。
/**
 * 同步执行 + 并发队列
 * 特点:在当前线程中执行任务,不会开启新线程,执行完一个任务,再执行下一个任务。
 */
- (void)syncConcurrent {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"syncConcurrent---begin");
    
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_sync(queue, ^{
        // 追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    dispatch_sync(queue, ^{
        // 追加任务 2
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    dispatch_sync(queue, ^{
        // 追加任务 3
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    NSLog(@"syncConcurrent---end");
}

同步执行 + 并发队列 中可看到:

  • 所有任务都是在当前线程(主线程)中执行的,没有开启新的线程(同步执行不具备开启新线程的能力)。
  • 所有任务都在打印的 syncConcurrent---begin 和 syncConcurrent---end 之间执行的(同步任务 需要等待队列的任务执行结束)。
  • 任务按顺序执行的。按顺序执行的原因:虽然 并发队列 可以开启多个线程,并且同时执行多个任务。但是因为本身不能创建新线程,只有当前线程这一个线程(同步任务 不具备开启新线程的能力),所以也就不存在并发。而且当前线程只有等待当前队列中正在执行的任务执行完毕之后,才能继续接着执行下面的操作(同步任务 需要等待队列的任务执行结束)。所以任务只能一个接一个按顺序执行,不能同时被执行。
4.2 异步执行 + 并发队列
  • 可以开启多个线程,任务交替(同时)执行。
/**
 * 异步执行 + 并发队列
 * 特点:可以开启多个线程,任务交替(同时)执行。
 */
- (void)asyncConcurrent {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncConcurrent---begin");
    
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_CONCURRENT);
    
    dispatch_async(queue, ^{
        // 追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    dispatch_async(queue, ^{
        // 追加任务 2
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    dispatch_async(queue, ^{
        // 追加任务 3
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    NSLog(@"asyncConcurrent---end");
}

在 异步执行 + 并发队列 中可以看出:

  • 除了当前线程(主线程),系统又开启了 3 个线程,并且任务是交替/同时执行的。(异步执行 具备开启新线程的能力。且 并发队列 可开启多个线程,同时执行多个任务)。
  • 所有任务是在打印的 syncConcurrent---begin 和 syncConcurrent---end 之后才执行的。说明当前线程没有等待,而是直接开启了新线程,在新线程中执行任务(异步执行 不做等待,可以继续执行任务)。

4.3 同步执行 + 串行队列

  • 不会开启新线程,在当前线程执行任务。任务是串行的,执行完一个任务,再执行下一个任务。
/**
 * 同步执行 + 串行队列
 * 特点:不会开启新线程,在当前线程执行任务。任务是串行的,执行完一个任务,再执行下一个任务。
 */
- (void)syncSerial {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"syncSerial---begin");
    
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_SERIAL);
    
    dispatch_sync(queue, ^{
        // 追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
    });
    dispatch_sync(queue, ^{
        // 追加任务 2
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
    });
    dispatch_sync(queue, ^{
        // 追加任务 3
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    NSLog(@"syncSerial---end");
}

同步执行 + 串行队列 可以看到:

  • 所有任务都是在当前线程(主线程)中执行的,并没有开启新的线程(同步执行 不具备开启新线程的能力)。
  • 所有任务都在打印的 syncConcurrent---beginsyncConcurrent---end 之间执行(同步任务 需要等待队列的任务执行结束)。
  • 任务是按顺序执行的(串行队列 每次只有一个任务被执行,任务一个接一个按顺序执行)

4.4 异步执行 + 串行队列

  • 会开启新线程,但是因为任务是串行的,执行完一个任务,再执行下一个任务

  • 串行队列 + 异步 == 只会开启一个线程,且队列中所有的任务都是在这个线程执行

- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
    
    dispatch_queue_t queue = dispatch_queue_create("serial", DISPATCH_QUEUE_SERIAL);
    dispatch_async(queue, ^{
        NSLog(@"111:%@",[NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"222:%@",[NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"333:%@",[NSThread currentThread]);
    });
}
/**
 * 异步执行 + 串行队列
 * 特点:会开启新线程,但是因为任务是串行的,执行完一个任务,再执行下一个任务。
 */
- (void)asyncSerial {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncSerial---begin");
    
    dispatch_queue_t queue = dispatch_queue_create("net.bujige.testQueue", DISPATCH_QUEUE_SERIAL);
    
    dispatch_async(queue, ^{
        // 追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
    });
    dispatch_async(queue, ^{
        // 追加任务 2
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
    });
    dispatch_async(queue, ^{
        // 追加任务 3
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    NSLog(@"asyncSerial---end");
}

异步执行 + 串行队列 可以看到:

  • 开启了一条新线程(异步执行 具备开启新线程的能力,串行队列 只开启一个线程)。
  • 所有任务是在打印的 syncConcurrent---begin 和 syncConcurrent---end 之后才开始执行的(异步执行 不会做任何等待,可以继续执行任务)。
  • 任务是按顺序执行的(串行队列 每次只有一个任务被执行,任务一个接一个按顺序执行)。
    下边讲讲刚才我们提到过的:主队列
  • 主队列:GCD 默认提供的 串行队列
    1.默认情况下,平常所写代码是直接放在主队列中的。
    2.所有放在主队列中的任务,都会放到主线程中执行。
    3.可使用 dispatch_get_main_queue() 获得主队列。
我们再来看看主队列的两种组合方式

4.5 同步执行 + 主队列

同步执行 + 主队列 在不同线程中调用结果也是不一样,在主线程中调用会发生死锁问题,而在其他线程中调用则不会。

4.5.1 在主线程中调用 『同步执行 + 主队列』
  • 互相等待卡住不可行
/**
 * 同步执行 + 主队列
 * 特点(主线程调用):互等卡主不执行。
 * 特点(其他线程调用):不会开启新线程,执行完一个任务,再执行下一个任务。
 */
- (void)syncMain {
    
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"syncMain---begin");
    
    dispatch_queue_t queue = dispatch_get_main_queue();
    
    dispatch_sync(queue, ^{
        // 追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    dispatch_sync(queue, ^{
        // 追加任务 2
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    dispatch_sync(queue, ^{
        // 追加任务 3
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    NSLog(@"syncMain---end");
}

在主线程中使用 同步执行 + 主队列 可以惊奇的发现:

  • 追加到主线程的任务 1、任务 2、任务 3 都不再执行了,而且 syncMain---end 也没有打印,在 XCode 9 及以上版本上还会直接报崩溃。这是为什么呢?

这是因为我们在主线程中执行 syncMain 方法,相当于把 syncMain 任务放到了主线程的队列中。而 同步执行 会等待当前队列中的任务执行完毕,才会接着执行。那么当我们把 任务 1 追加到主队列中,任务 1 就在等待主线程处理完 syncMain任务。而syncMain 任务需要等待 任务 1 执行完毕,才能接着执行。
那么,现在的情况就是 syncMain任务和 任务 1 都在等对方执行完毕。这样大家互相等待,所以就卡住了,所以我们的任务执行不了,而且 syncMain---end 也没有打印。

要是如果不在主线程中调用,而在其他线程中调用会如何呢?

4.5.2 在其他线程中调用『同步执行 + 主队列』

在其他线程中使用 同步执行 + 主队列 可看到:

  • 所有任务都是在主线程(非当前线程)中执行的,没有开启新的线程(所有放在主队列中的任务,都会放到主线程中执行)。
  • 所有任务都在打印的 syncConcurrent---beginsyncConcurrent---end 之间执行(同步任务 需要等待队列的任务执行结束)。
  • 任务是按顺序执行的(主队列是 串行队列,每次只有一个任务被执行,任务一个接一个按顺序执行)
    为什么现在就不会卡住了呢?
    因为syncMain 任务 放到了其他线程里,而 任务 1任务 2任务3 都在追加到主队列中,这三个任务都会在主线程中执行。syncMain 任务 在其他线程中执行到追加 任务 1 到主队列中,因为主队列现在没有正在执行的任务,所以,会直接执行主队列的 任务1,等 任务1执行完毕,再接着执行 任务 2任务 3。所以这里不会卡住线程,也就不会造成死锁问题。

4.6 异步执行 + 主队列

  • 只在主线程中执行任务,执行完一个任务,再执行下一个任务。
/**
 * 异步执行 + 主队列
 * 特点:只在主线程中执行任务,执行完一个任务,再执行下一个任务
 */
- (void)asyncMain {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"asyncMain---begin");
    
    dispatch_queue_t queue = dispatch_get_main_queue();
    
    dispatch_async(queue, ^{
        // 追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    dispatch_async(queue, ^{
        // 追加任务 2
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    dispatch_async(queue, ^{
        // 追加任务 3
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"3---%@",[NSThread currentThread]);      // 打印当前线程
    });
    
    NSLog(@"asyncMain---end");
}

异步执行 + 主队列 可以看到:

  • 所有任务都是在当前线程(主线程)中执行的,并没有开启新的线程(虽然 异步执行 具备开启线程的能力,但因为是主队列,所以所有任务都在主线程中)
  • 所有任务是在打印的 syncConcurrent---beginsyncConcurrent---end 之后才开始执行的(异步执行不会做任何等待,可以继续执行任务)。
  • 任务是按顺序执行的(因为主队列是 串行队列,每次只有一个任务被执行,任务一个接一个按顺序执行)。

5. GCD 线程间的通信

在 iOS 开发过程中,我们一般在主线程里边进行 UI 刷新,例如:点击、滚动、拖拽等事件。我们通常把一些耗时的操作放在其他线程,比如说图片下载、文件上传等耗时操作。而当我们有时候在其他线程完成了耗时操作时,需要回到主线程,那么就用到了线程之间的通讯。

/**
 * 线程间通信
 */
- (void)communication {
    // 获取全局并发队列
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    // 获取主队列
    dispatch_queue_t mainQueue = dispatch_get_main_queue();
    
    dispatch_async(queue, ^{
        // 异步追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        
        // 回到主线程
        dispatch_async(mainQueue, ^{
            // 追加在主线程中执行的任务
            [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
            NSLog(@"2---%@",[NSThread currentThread]);      // 打印当前线程
        });
    });
}
  • 可以看到在其他线程中先执行任务,执行完了之后回到主线程执行主线程的相应操作。

6.6 GCD 信号量:dispatch_semaphore

GCD 中的信号量是指Dispatch Semaphore,是持有计数的信号。类似于过高速路收费站的栏杆。可以通过时,打开栏杆,不可以通过时,关闭栏杆。在 Dispatch Semaphore 中,使用计数来完成这个功能,计数小于 0 时等待,不可通过。计数为 0 或大于 0 时,计数减 1 且不等待,可通过。
Dispatch Semaphore 提供了三个方法:

  • dispatch_semaphore_create:创建一个 Semaphore 并初始化信号的总量
  • dispatch_semaphore_signal:发送一个信号,让信号总量加 1
  • dispatch_semaphore_wait:可以使总信号量减 1,信号总量小于 0 时就会一直等待(阻塞所在线程),否则就可以正常执行。

注意:信号量的使用前提是:想清楚你需要处理哪个线程等待(阻塞),又要哪个线程继续执行,然后使用信号量。

Dispatch Semaphore 在实际开发中主要用于:

  • 保持线程同步,将异步执行任务转换为同步执行任务
  • 保证线程安全,为线程加锁

6.6.1 Dispatch Semaphore 线程同步

下面,我们来利用 Dispatch Semaphore 实现线程同步,将异步执行任务转换为同步执行任务。

/**
 * semaphore 线程同步
 */
- (void)semaphoreSync {
    
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
    
    __block int number = 0;
    dispatch_async(queue, ^{
        // 追加任务 1
        [NSThread sleepForTimeInterval:2];              // 模拟耗时操作
        NSLog(@"1---%@",[NSThread currentThread]);      // 打印当前线程
        
        number = 100;
        
        dispatch_semaphore_signal(semaphore);
    });
    
    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
    NSLog(@"semaphore---end,number = %zd",number);
}

从 Dispatch Semaphore 实现线程同步的代码可以看到:

  • semaphore---end 是在执行完 number = 100; 之后才打印的。而且输出结果 number 为 100。这是因为 异步执行 不会做任何等待,可以继续执行任务。 执行顺如下:
    1.semaphore 初始创建时计数为 0。
    2.异步执行 将 任务 1 追加到队列之后,不做等待,接着执行
    dispatch_semaphore_wait 方法, semaphore减 1,此时 semaphore == -1,当前线程进入等待状态。
    3.然后,异步任务 1 开始执行。任务 1 执行到 dispatch_semaphore_signal 之后,总信号量加 1,此时 semaphore == 0,正在被阻塞的线程(主线程)恢复继续执行。
    4.最后打印 semaphore---end, number = 100。

6.6.2 Dispatch Semaphore 线程安全和线程同步(为线程加锁)

线程安全:如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作(更改变量),一般都需要考虑线程同步,否则的话就可能影响线程安全。

线程同步:可理解为线程 A 和 线程 B 一块配合,A 执行到一定程度时要依靠线程 B 的某个结果,于是停下来,示意 B 运行;B 依言执行,再将结果给 A;A 再继续操作

举个简单例子就是:两个人在一起聊天。两个人不能同时说话,避免听不清(操作冲突)。等一个人说完(一个线程结束操作),另一个再说(另一个线程再开始操作)。
下面,我们模拟火车票售卖的方式,实现 NSThread 线程安全和解决线程同步问题。

场景:总共有 50 张火车票,有两个售卖火车票的窗口,一个是北京火车票售卖窗口,另一个是上海火车票售卖窗口。两个窗口同时售卖火车票,卖完为止。

6.6.2.2 线程安全(使用 semaphore 加锁)

/**
 * 线程安全:使用 semaphore 加锁
 * 初始化火车票数量、卖票窗口(线程安全)、并开始卖票
 */
- (void)initTicketStatusSave {
    NSLog(@"currentThread---%@",[NSThread currentThread]);  // 打印当前线程
    NSLog(@"semaphore---begin");
    
    semaphoreLock = dispatch_semaphore_create(1);
    
    self.ticketSurplusCount = 50;
    
    // queue1 代表北京火车票售卖窗口
    dispatch_queue_t queue1 = dispatch_queue_create("net.bujige.testQueue1", DISPATCH_QUEUE_SERIAL);
    // queue2 代表上海火车票售卖窗口
    dispatch_queue_t queue2 = dispatch_queue_create("net.bujige.testQueue2", DISPATCH_QUEUE_SERIAL);
    
    __weak typeof(self) weakSelf = self;
    dispatch_async(queue1, ^{
        [weakSelf saleTicketSafe];
    });
    
    dispatch_async(queue2, ^{
        [weakSelf saleTicketSafe];
    });
}

/**
 * 售卖火车票(线程安全)
 */
- (void)saleTicketSafe {
    while (1) {
        // 相当于加锁
        dispatch_semaphore_wait(semaphoreLock, DISPATCH_TIME_FOREVER);
        
        if (self.ticketSurplusCount > 0) {  // 如果还有票,继续售卖
            self.ticketSurplusCount--;
            NSLog(@"%@", [NSString stringWithFormat:@"剩余票数:%d 窗口:%@", self.ticketSurplusCount, [NSThread currentThread]]);
            [NSThread sleepForTimeInterval:0.2];
        } else { // 如果已卖完,关闭售票窗口
            NSLog(@"所有火车票均已售完");
            
            // 相当于解锁
            dispatch_semaphore_signal(semaphoreLock);
            break;
        }
        
        // 相当于解锁
        dispatch_semaphore_signal(semaphoreLock);
    }
}

可以看出,在考虑了线程安全的情况下,使用 dispatch_semaphore 机制之后,得到的票数是正确的,没有出现混乱的情况。我们也就解决了多个线程同步的问题。

7.0 GCD之dispatch_group

之前已经介绍了dispatch_semaphore的底层实现,dispatch_group的实现是基于前者的
假设有这么场景:有一个A耗时操作,BC两个网络请求当ABC都执行完成后,刷新页面。我们可以用dispatch_group实现。关键如下:

- (void)viewDidLoad {
    [super viewDidLoad];
    
        __block NSInteger number = 0;
    
    dispatch_group_t group = dispatch_group_create();
    
    //A耗时操作
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(3);
        number += 2222;
    });
    
    //B网络请求
    dispatch_group_enter(group);
    [self sendRequestWithCompletion:^(id response) {
        number += [response integerValue];
        dispatch_group_leave(group);
    }];
    
    //C网络请求
    dispatch_group_enter(group);
    [self sendRequestWithCompletion:^(id response) {
        number += [response integerValue];
        dispatch_group_leave(group);
    }];
    
    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
        NSLog(@"%zd", number);
    });
}

- (void)sendRequestWithCompletion:(void (^)(id response))completion {
    //模拟一个网络请求
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_async(queue, ^{
        sleep(2);
        dispatch_async(dispatch_get_main_queue(), ^{
            if (completion) completion(@1111);
        });
    });
}

接下来我们根据上面的流程来看一下dispatch_group的相关API

dispatch_group_create

dispatch_group_t
dispatch_group_create(void)
{
    return (dispatch_group_t)dispatch_semaphore_create(LONG_MAX);
}

dispatch_group_create其实就是创建了一个valueLONG_MAXdispatch_semaphore信号量

dispatch_group_async

void
dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_block_t db)
{
    dispatch_group_async_f(dg, dq, _dispatch_Block_copy(db),
            _dispatch_call_block_and_release);
}

dispatch_group_async只是dispatch_group_async_f的封装

dispatch_group_async_f

void
dispatch_group_async_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
        dispatch_function_t func)
{
    dispatch_continuation_t dc;

    _dispatch_retain(dg);
    dispatch_group_enter(dg);

    dc = fastpath(_dispatch_continuation_alloc_cacheonly());
    if (!dc) {
        dc = _dispatch_continuation_alloc_from_heap();
    }

    dc->do_vtable = (void *)(DISPATCH_OBJ_ASYNC_BIT | DISPATCH_OBJ_GROUP_BIT);
    dc->dc_func = func;
    dc->dc_ctxt = ctxt;
    dc->dc_group = dg;

    // No fastpath/slowpath hint because we simply don't know
    if (dq->dq_width != 1 && dq->do_targetq) {
        return _dispatch_async_f2(dq, dc);
    }

    _dispatch_queue_push(dq, dc);
}

从上面的代码我们可以看出dispatch_group_async_fdispatch_async_f相似。dispatch_group_async_f多了dispatch_group_enter(dg);,另外在do_vtable的赋值中dispatch_group_async_f多了一个DISPATCH_OBJ_GROUP_BIT的标记符。既然添加了dispatch_group_enter必定会存在dispatch_group_leave。在之前《深入理解GCD之dispatch_queue》介绍_dispatch_continuation_pop函数的源码中有一段代码如下:

    _dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
    if (dg) {
        //group需要进行调用dispatch_group_leave并释放信号
        dispatch_group_leave(dg);
        _dispatch_release(dg);
    }

所以dispatch_group_async_f函数中的dispatch_group_leave是在_dispatch_continuation_pop函数中调用的。
这里概括一下dispatch_group_async_f的工作流程:

  1. 调用dispatch_group_enter
  2. blockqueue等信息记录到dispatch_continuation_t结构体中,并将它加入到group的链表中;
  3. _dispatch_continuation_pop执行时会判断任务是否为group,是的话执行完任务再调用dispatch_group_leave以达到信号量的平衡。

dispatch_group_enter

void
dispatch_group_enter(dispatch_group_t dg)
{
    dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;

    (void)dispatch_semaphore_wait(dsema, DISPATCH_TIME_FOREVER);
}

dispatch_group_enterdispatch_group_t转换成dispatch_semaphore_t,并调用dispatch_semaphore_wait,原子性减1后,进入等待状态直到有信号唤醒。所以说
dispatch_group_enter就是对dispatch_semaphore_wait的封装

dispatch_group_leave

void
dispatch_group_leave(dispatch_group_t dg)
{
    dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
    dispatch_atomic_release_barrier();
    long value = dispatch_atomic_inc2o(dsema, dsema_value);//dsema_value原子性加1
    if (slowpath(value == LONG_MIN)) {//内存溢出,由于dispatch_group_leave在dispatch_group_enter之前调用
        DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()");
    }
    if (slowpath(value == dsema->dsema_orig)) {//表示所有任务已经完成,唤醒group
        (void)_dispatch_group_wake(dsema);
    }
}

从上面的源代码中我们看到dispatch_group_leavedispatch_group_t转换成dispatch_semaphore_t后将dsema_value的值原子性加1。如果valueLONG_MIN程序crash;如果value等于dsema_orig表示所有任务已完成,调用_dispatch_group_wake唤醒group_dispatch_group_wake的用于和notify有关,我们会在后面介绍)。因为在enter的时候进行了原子性减1操作。所以在leave的时候需要原子性加1。

这里先说明一下enterleave之间的关系:

  1. dispatch_group_leavedispatch_group_enter配对使用。当调用了dispatch_group_enter而没有调用dispatch_group_leave时,由于value不等于dsema_orig不会走到唤醒逻辑,dispatch_group_notify中的任务无法执行或者dispatch_group_wait收不到信号而卡住线程。
  2. dispatch_group_enter必须在dispatch_group_leave之前出现。当dispatch_group_leavedispatch_group_enter多调用了一次或者说在dispatch_group_enter之前被调用的时候,dispatch_group_leave进行原子性加1操作,相当于valueLONGMAX+1,发生数据长度溢出,变成LONG_MIN,由于value == LONG_MIN成立,程序发生crash

dispatch_group_notify

void
dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
        dispatch_block_t db)
{
    dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db),
            _dispatch_call_block_and_release);
}

dispatch_group_notifydispatch_group_notify_f的封装,具体实现在后者。

dispatch_group_notify_f

void
dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
        void (*func)(void *))
{
    dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
    struct dispatch_sema_notify_s *dsn, *prev;

    //封装dispatch_continuation_t结构体
    // FIXME -- this should be updated to use the continuation cache
    while (!(dsn = calloc(1, sizeof(*dsn)))) {
        sleep(1);
    }

    dsn->dsn_queue = dq;
    dsn->dsn_ctxt = ctxt;
    dsn->dsn_func = func;
    _dispatch_retain(dq);
    dispatch_atomic_store_barrier();
    //将结构体放到链表尾部,如果链表为空同时设置链表头部节点并唤醒group
    prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn);
    if (fastpath(prev)) {
        prev->dsn_next = dsn;
    } else {
        _dispatch_retain(dg);
        (void)dispatch_atomic_xchg2o(dsema, dsema_notify_head, dsn);
        if (dsema->dsema_value == dsema->dsema_orig) {//任务已经完成,唤醒group
            _dispatch_group_wake(dsema);
        }
    }
}

所以dispatch_group_notify函数只是用链表把所有回调通知保存起来,等待调用。

_dispatch_group_wake

static long
_dispatch_group_wake(dispatch_semaphore_t dsema)
{
    struct dispatch_sema_notify_s *next, *head, *tail = NULL;
    long rval;
    //将dsema的dsema_notify_head赋值为NULL,同时将之前的内容赋给head
    head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL);
    if (head) {
        // snapshot before anything is notified/woken <rdar://problem/8554546>
        //将dsema的dsema_notify_tail赋值为NULL,同时将之前的内容赋给tail
        tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL);
    }
    //将dsema的dsema_group_waiters设置为0,并返回原来的值
    rval = dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0);
    if (rval) {
        //循环调用semaphore_signal唤醒当初等待group的信号量,使得dispatch_group_wait函数返回。
        // wake group waiters
#if USE_MACH_SEM
        _dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
        do {
            kern_return_t kr = semaphore_signal(dsema->dsema_waiter_port);
            DISPATCH_SEMAPHORE_VERIFY_KR(kr);
        } while (--rval);
#elif USE_POSIX_SEM
        do {
            int ret = sem_post(&dsema->dsema_sem);
            DISPATCH_SEMAPHORE_VERIFY_RET(ret);
        } while (--rval);
#endif
    }
    if (head) {
        //获取链表,依次调用dispatch_async_f异步执行在notify函数中的任务即Block。
        // async group notify blocks
        do {
            dispatch_async_f(head->dsn_queue, head->dsn_ctxt, head->dsn_func);
            _dispatch_release(head->dsn_queue);
            next = fastpath(head->dsn_next);
            if (!next && head != tail) {
                while (!(next = fastpath(head->dsn_next))) {
                    _dispatch_hardware_pause();
                }
            }
            free(head);
        } while ((head = next));
        _dispatch_release(dsema);
    }
    return 0;
}

_dispatch_group_wake主要的作用有两个:
1.调用semaphore_signal唤醒当初等待group的信号量,使得dispatch_group_wait函数返回。
2.获取链表,依次调用dispatch_async_f异步执行在notify函数中的任务即Block

到这里我们已经差不多知道了dispatch_group工作过程,我们用一张图表示:

image.png

dispatch_group_wait

long
dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout)
{
    dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;

    if (dsema->dsema_value == dsema->dsema_orig) {//没有需要执行的任务
        return 0;
    }
    if (timeout == 0) {//返回超时
#if USE_MACH_SEM
        return KERN_OPERATION_TIMED_OUT;
#elif USE_POSIX_SEM
        errno = ETIMEDOUT;
        return (-1);
#endif
    }
    return _dispatch_group_wait_slow(dsema, timeout);
}

dispatch_group_wait用于等待group中的任务完成。

_dispatch_group_wait_slow

static long
_dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
    long orig;

again:
    // check before we cause another signal to be sent by incrementing
    // dsema->dsema_group_waiters
    if (dsema->dsema_value == dsema->dsema_orig) {
        return _dispatch_group_wake(dsema);
    }
    // Mach semaphores appear to sometimes spuriously wake up. Therefore,
    // we keep a parallel count of the number of times a Mach semaphore is
    // signaled (6880961).
    (void)dispatch_atomic_inc2o(dsema, dsema_group_waiters);
    // check the values again in case we need to wake any threads
    if (dsema->dsema_value == dsema->dsema_orig) {
        return _dispatch_group_wake(dsema);
    }

#if USE_MACH_SEM
    mach_timespec_t _timeout;
    kern_return_t kr;

    _dispatch_semaphore_create_port(&dsema->dsema_waiter_port);

    // From xnu/osfmk/kern/sync_sema.c:
    // wait_semaphore->count = -1; /* we don't keep an actual count */
    //
    // The code above does not match the documentation, and that fact is
    // not surprising. The documented semantics are clumsy to use in any
    // practical way. The above hack effectively tricks the rest of the
    // Mach semaphore logic to behave like the libdispatch algorithm.

    switch (timeout) {
    default:
        do {
            uint64_t nsec = _dispatch_timeout(timeout);
            _timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC);
            _timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC);
            kr = slowpath(semaphore_timedwait(dsema->dsema_waiter_port,
                    _timeout));
        } while (kr == KERN_ABORTED);

        if (kr != KERN_OPERATION_TIMED_OUT) {
            DISPATCH_SEMAPHORE_VERIFY_KR(kr);
            break;
        }
        // Fall through and try to undo the earlier change to
        // dsema->dsema_group_waiters
    case DISPATCH_TIME_NOW:
        while ((orig = dsema->dsema_group_waiters)) {
            if (dispatch_atomic_cmpxchg2o(dsema, dsema_group_waiters, orig,
                    orig - 1)) {
                return KERN_OPERATION_TIMED_OUT;
            }
        }
        // Another thread called semaphore_signal().
        // Fall through and drain the wakeup.
    case DISPATCH_TIME_FOREVER:
        do {
            kr = semaphore_wait(dsema->dsema_waiter_port);
        } while (kr == KERN_ABORTED);
        DISPATCH_SEMAPHORE_VERIFY_KR(kr);
        break;
    }
#elif USE_POSIX_SEM
//这部分代码省略
#endif

    goto again;
}

从上面的代码我们发现_dispatch_group_wait_slow_dispatch_semaphore_wait_slow的逻辑很接近。都利用mach内核的semaphore进行信号的发送。区别在于_dispatch_semaphore_wait_slow在等待结束后是return,而_dispatch_group_wait_slow在等待结束是调用_dispatch_group_wake去唤醒这个group

dispatch_group 总结:

  1. dispatch_group是一个初始值为LONG_MAX的信号量,group中的任务完成是判断其value是否恢复成初始值。
  2. dispatch_group_enterdispatch_group_leave必须成对使用并且支持嵌套。
  3. 如果dispatch_group_enterdispatch_group_leave多,由于value不等于dsema_orig不会走到唤醒逻辑,dispatch_group_notify中的任务无法执行或者dispatch_group_wait收不到信号而卡住线程。如果是dispatch_group_leave多,则会引起崩溃。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容