NLocalSAT: Boosting Local Search with Solution Prediction 2020-05-02

NLocalSAT: Boosting Local Search with Solution Prediction

Abstract

NLocalSAT :address stochastic local search (SLS) 随机初始化的问题

NLocalSAT combines SLS with a solution prediction model, which boosts SLS by changing initialization assignments with a neural network.
NLocalSAT是使用神经网络增强SLS求解器的一种方法,离线方法, 使用神经网络来增强SAT求解器。
(NeuroCore在线预测,会给CDCL带来大量开销。而NLocalSAT以离线方式使用预测。 在这种方法中,对于每个SAT问题,只计算一次神经网络。)

Experiment on five SLS solvers (CCAnr, Sparrow, CPSparrow, YalSAT, and probSAT)
Experimental results show that NLocalSAT significantly increases the number of problems solved and decreases the solving time for hard problems.

Introduction

state-of-the-art SAT solvers :
CDCL solvers are based on the deep backtracking search, which assigns one variable each time and backtracks when a conflict occurs.
SLS solvers initialize an assignment for all variables and then find a solution by constantly flipping the assignment of variables to optimize some score.

GCN is a neural network model on graph structures, which extracts both structural information and information on nodes in a graph.

Model

the solver is to find a final solution with the guidance of the neural network.
input : formula + transfer it into a formula graph + fed to a graph-based neural network for extracting features.(GGNN)
output : a candidate solution (by a multi-layer perceptron after the neural network. )
use this candidate solution to initialize the assignments of an SLS SAT solver to guide the search process.


image.png
  1. formula graph (为了考虑 the structural information of an input formula )
    transfer to CNF [conjunction of clauses C1 ∧ C2 ∧···∧ Cn
    ( Ci = Li1 ∨Li2 ∨···∨Lin, where Lij = xk or Lij = ¬xk ) ]
    image.png

2.Graph-Based Neural Network (predict the candidate solution for a SAT problem.)
a gated graph convolutional network to extract structural information about the graph
and a two-layer perceptron to predict the solution.
GCNN : extract features of variables.
takes the adjacency matrix as the input and
outputs the features of each variable extracted from the graph.

  1. Two-layer perceptron
    after GGCN , vectors of nodes contains structural information of literals
    Through a softmax function, we get the probability for the variable to be true.

loss function: using ground truth of vi.

Training Data

The competition of SAT in2015 was called SAT Race 2015.
Goal : predict the solution to the SAT problem,
解不唯一问题: 求解器为每个变量和每个否定变量维护一个计数器。x与not x选择多的那个为1

SLS solver 原理:


image.png

initial解很重要
solvers restart the searching process by reassigning new random values to variables after a period of time without a score increase.
Before starting the solver, we run our neural network to predict a solution。


image.png

modified SLS solvers.


image.png

Result:

The experimental result shows that solvers with NLocalSAT solve more problems than the original ones


image.png

Word&Phrase

促进 promote, facilitate, accelerate, boost, stimulate, advance

in an off-line way. 离线

促使 cause, prompt, urge, induce, bring, push

induces limited overhead, 产生有限开销

fine-tuned 微调

counter-intuitive 违反直觉的

cause the SLS solvers to get stuck

have isomorphic problems between these two datasets 两个数据集的同构问题

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342