PDF的来源——概率密度函数

你不会还真的以为这是一篇讲怎么做pdf文件,怎么编辑、保存、美化的文章吧?
咳咳,很遗憾告诉你不是。
这是因为小编昨天正好看到了这样一幅图,所以想吟诗一首写一篇博客。

PDF

前置知识

  • 随随便便有点微积分基础
  • 至少要知道函数,概率是什么吧……
  • 能看得懂中国文字
    好的,现在假定你们已经有了这些基础,那么接下来进入正文。

不过限于小编只有初中能力(现在才刚中考完),所以现阶段所不涉及的内容一律以定义形式详细说明。

随机变量

随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。 [1]
随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
(copy自百度百科)

上面那一坨没有什么用,只是用来凑字数的……
在学习函数时,首先提到的就是自变量和因变量,变量是什么,想必你一定很清楚。
随机变量就是在变量的基础上,增加了随机性,通常谈到随机变量就会想到概率。
例如一个骰子,随机投掷后向上的点数,就是一个随机变量。
而通常的变量是任意的,例如随随便便画的二次函数,自变量x就不需要随机。

1)离散型随机变量

在高中时学概率那一块的时候,会提到各种东西(例如分布列之类的,让你去求),但是,高中阶段通常研究的都是离散型随机变量。

离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
(copy自百度百科)

离散型随机变量最大的特点就在于它有有限个可以取到的值。
例如我现在去一个有五棵苹果的苹果树上摘苹果,由于爬树需要做很多功,所以我就郑重的决定一板砖看看能拍下来几个。

搞事情

这么直观的一看就知道,我打下来的数目取值为0,1,2,3,4,5,显然这些取值是有限的,我可以完全枚举出来。再例如掷骰子,向上的点数就是离散型随机变量,取值只有1,2,3,4,5,6。

2)连续型随机变量

连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。

连续型随机变量与之不同,它不能准确的找到每一个可能的取值,通常找到的就是一个区间。
例如这里有500mL的水,我只喝一口(不清楚我的嘴有多大),还剩下多少水?
你可以尝试一下枚举剩余水量这一变量的所有可以取到的值,我相信你枚举不完的,除非你还停留在幼儿园大班,不清楚有小数这种东西的存在。

3)分布函数

例如一次考试,我们往往更关心的是及格率{x>=及格线},优秀率{x>=优秀线}之类的。
假设及格线是60分,那么及格率表述为P{x>=60},假如一共有100人参加了考试,80人及格,那么及格率P{x>=60}=80/100=4/5。
所谓的分布函数就是F(x)=P{X>=60}。(60可以依据情况换做任意常数C,其表示的就是落在区间(-∞,C]的概率)
只要知道了分布函数,那么就掌握了这一事件随机变量的统计规律,可以快速知道任意区间的概率。
例如我想知道(x1,x2]的概率,那么类似于前缀和的算法,只要用F(x2)-F(x1)就可以快速得到。

概率密度函数

对于连续型随机变量的分布函数,它是连续可导的。
对其的一阶导数,称之为概率密度函数f(x)。(若没有接触过微积分,可认为是分布函数每个点处瞬间变化率所组成的函数)
由于微分和积分互为逆运算,所以落在某区间的概率就是这个概率密度函数在这个区间的积分。所以通常直接用概率密度没有什么实际意义,往往使用的就是它在某区域的积分

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349