Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
rainwatertrap.png
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
reference: https://www.youtube.com/watch?v=8BHqSdwyODs
Solution:Two pointers Interative
思路: 左右指针向中过程中,更新leftmax, rightmax, 小的那个的位置的水量是可以确定的(leftmax - height[i]) or (rightmax - height[j])
Time Complexity: O(N) Space Complexity: O(1)
class Solution {
public int trap(int[] height) {
if(height == null) return 0;
int result = 0;
int i = 0;
int j = height.length - 1;
int leftmax = 0;
int rightmax = 0;
while(i <= j) {
leftmax = Math.max(leftmax, height[i]);
rightmax = Math.max(rightmax, height[j]);
if(leftmax < rightmax) {
// leftmax is smaller than rightmax, so the (leftmax-height[a]) water can be stored
result += (leftmax - height[i]);
i++;
}
else {
result += (rightmax - height[j]);
j--;
}
}
return result;
}
}
思路:
Time Complexity: O(N) Space Complexity: O(N)
Solution Code:
class Solution {
public int trap(int[] height) {
if(height == null) return 0;
int result = 0;
int i = 0;
int j = height.length - 1;
int leftmax = 0;
int rightmax = 0;
while(i <= j) {
leftmax = Math.max(leftmax, height[i]);
rightmax = Math.max(rightmax, height[j]);
if(leftmax < rightmax) {
// leftmax is smaller than rightmax, so the (leftmax-height[a]) water can be stored
result += (leftmax - height[i]);
i++;
}
else {
result += (rightmax - height[j]);
j--;
}
}
return result;
}
}